Italy
Assessing the Carbon Intensity of e-fuels Production in European Countries: A Temporal Analysis
Nov 2024
Publication
The transport sector heavily relies on the use of fossil fuels which are causing major environmental concerns. Solutions relying on the direct or indirect use of electricity through efuel production are emerging to power the transport sector. To ensure environmental benefits are achieved over this transition an accurate estimation of the impact of the use of electricity is needed. This requires a high temporal resolution to capture the high variability of electricity. This paper presents a previously unseen temporal analysis of the carbon intensity of e-fuels using grid electricity in countries that are members of the European Network of Transmission System Operators (ENTSO-E). It also provides an estimation of the potential load factor for producing low-carbon e-fuels according to the European Union legislative framework. This was achieved by building on top of the existing EcoDynElec tool to develop EcoDynElec_xr a python tool enabling—with an hourly time resolution—the calculation visualisation and analysis of the historical time-series of electricity mixing from the ENTSO-E. The results highlight that in 2023 very few European countries were reaching low carbon intensity for electricity that enables the use of grid electricity for the production of green electrolytic hydrogen. The methodological assumptions consider the consumption of the electricity mix instead of the production mix and the considered time step is of paramount importance and drastically impacts the potential load factor of green hydrogen production. The developed tools are released under an open-source license to ensure transparency result reproducibility and reuse regarding newer data for other territories or for other purposes.
A Survey on Hydrogen Tanks for Sustainable Aviation
Aug 2024
Publication
The aviation industry is facing challenges related to its environmental impact and thus the pressing need to develop aircraft technologies aligned with the society climate goals. Hydrogen is emerging as a potential clean fuel for aviation as it offers several advantages in terms of supply potential and weight specific energy. One of the key factors enabling the use of H2 in aviation is the development of reliable and safe storage technologies to be integrated into aircraft design. This work provides an overview of the technologies currently being investigated or developed for the storage of hydrogen within the aircraft which would enable the use of hydrogen as a sustainable fuel for aviation with emphasis on tanks material and structural aspects. The requirements dictated by the need of integrating the fuel system within existing or ex-novo aircraft architectures are discussed. Both the storage of gaseous and liquid hydrogen are considered and the main challenges related to the presence of either high internal pressures or cryogenic conditions are explored in the background of recent literature. The materials employed for the manufacturing of hydrogen tanks are overviewed. The need to improve the storage tanks efficiency is emphasized and issues such as thermal insulation and hydrogen embrittlement are covered as well as the reference to the main structural health monitoring strategies. Recent projects dealing with the development of onboard tanks for aviation are eventually listed and briefly reviewed. Finally considerations on the tank layout deemed more realistic and achievable in the near future are discussed.
Heat Transfer Modeling of Hydrogen-Fueled Spark Ignition Engine
Jan 2025
Publication
Currently green hydrogen generated through renewable energy sources stands out as one of the best substitutes for fossil fuels in mitigating pollutant emissions and consequent global warming. Particularly the utilization of hydrogen in spark ignition engines has undergone extensive study in recent years. Many aspects have been analyzed: the conversion of gasoline engines to hydrogen operation the combustion duration the heat transfer and in general the engine thermal efficiency. Hydrogen combustion is characterized by a smaller quenching distance compared to traditional hydrocarbon fuels such as gasoline or natural gas and this produces a smaller thermal boundary layer and consequently higher heat transfer. This paper presents findings from experimental trials and numerical simulations conducted on a hydrogen-powered CFR (cooperative fuel research) engine focusing specifically on heat transfer with combustion chamber walls. The engine has also been fueled with methane and isooctane (two reference fuels); both the engine compression ratio and the air/fuel ratio have been changed in a wide range in order to compare the three fuels in terms of heat transfer combustion duration and engine thermal efficiency in different operating conditions. A numerical model has been calibrated with experimental data in order to predict the amount of heat transfer under the best thermal efficiency operating conditions. The results show that when operated with hydrogen the best engine efficiency is obtained with a compression ratio of 11.9 and an excess air ratio (λ) of 2.
Optimal Decarbonisation Pathways for the Italian Energy System: Modelling a Long-term Energy Transition to Achieve Zero Emission by 2050
May 2024
Publication
The goal of achieving a zero-emission energy system by 2050 requires accurate energy planning to minimise the overall cost of the energy transition. Long-term energy models based on cost-optimal solutions are extremely dependent on the cost forecasts of different technologies. However such forecasts are inherently uncertain. The aim of the present work is to identify a cost-optimal pathway for the Italian energy system decarbonisation and assess how renewable cost scenarios can affect the optimal solution. The analysis has been carried out with the H2RES model a single-objective optimisation algorithm based on Linear Programming. Different cost scenarios for photovoltaics on-shore and off-shore wind power and lithium-ion batteries are simulated. Results indicate that a 100% renewable energy system in Italy is technically feasible. Power-to-X technologies are crucial for balancing purposes enabling a share of non-dispatchable generation higher than 90%. Renewable cost scenarios affect the energy mix however both on-shore and off-shore wind saturate the maximum capacity potential in almost all scenarios. Cost forecasts for lithium-ion batteries have a significant impact on their optimal capacity and the role of hydrogen. Indeed as battery costs rise fuel cells emerge as the main solution for balancing services. This study emphasises the importance of conducting cost sensitivity analyses in long-term energy planning. Such analyses can help to determine how changes in cost forecasts may affect the optimal strategies for decarbonising national energy systems.
A Techno-economic Life Cycle Assessment of H2 Fuelled and Electrified Urban Buses
Sep 2025
Publication
Nowadays several technologies based on powertrain electrification and the exploitation of hydrogen represent valuable options for decarbonizing the on-road public transport sector. The considered alternatives should exhibit an effective benchmark between CO2 reduction potential and production/operational costs. Conducting a comprehensive Total Cost of Ownership (TCO) analysis coupled with a thorough Life Cycle Assessment (LCA) is therefore crucial in shaping the future for cleaner urban mobility. From this perspective this study compares different powertrain configurations for a 12 m urban bus: a conventional diesel Internal Combustion Engine Vehicle (ICEV) a series hybrid diesel two hydrogen-based series hybrid vehicles: a Hydrogen Hybrid Electric Vehicle featuring an H2-ICE (H2-HEV) or a Fuel Cell Electric Vehicle (FCEV) and a Battery Electric Vehicle (BEV). Moreover a sensitivity analysis has been conducted on the carbon footprint for power generation considering also the marginal electricity mix. In addition prospective LCA and TCO elements are introduced by addressing future technological projections for the 2030 horizon. The research reveals that as of today the BEV and hydrogen-fueled vehicles have comparable environmental impacts when the marginal electricity mix is considered. The techno-economic analysis indicates that under current conditions FCEVs and H2-HEVs are not cost-effective for CO₂ reduction unless powered by renewable energy sources. However considering future technological advancements and market evolution FCEVs offer the most promising balance between economic and environmental benefits particularly if hydrogen prices reach €4 per kilogram. If hydrogen-powered vehicles remain a niche market BEVs will be the most viable option for decarbonizing the transport sector in most European countries.
Techno-economic Feasibility of Integrating Hybrid-battery Hydrogen Energy Storage in Academic Buildings
Apr 2024
Publication
Green hydrogen production and storage are vital in mitigating carbon emissions and sustainable transition. However the high investment cost and management requirements are the bottleneck of utilizing hybrid hydrogen-based systems in microgrids. Given the necessity of cost-effective and optimal design of these systems the present study examines techno-economic feasibility of integrating hybrid hydrogen-based systems into an outdoor test facility. With this perspective several solar-driven hybrid scenarios are introduced at two energy storage levels namely the battery and hydrogen energy storage systems including the high-pressure gaseous hydrogen and metal hydride storage tanks. Dynamic simulations are carried out to address subtle interactions in components of the hybrid system by establishing a TRNSYS model coupled to a Fortran code simulating the metal hydride storage system. The OpenStudio-EnergyPlus plugin is used to simulate the building load validate against experimental data according to the measured data and monitored operating conditions. Aimed at enabling efficient integration of energy storage systems a techno-enviro-economic optimization algorithm is developed to simultaneously minimize the levelized cost of the electricity and maximize the CO2 mitigation in each proposed hybrid scenario. The results indicate that integrating the gaseous hydrogen and metal hydride storages into the photovoltaic-alone scenario enhances 22.6% and 14.4% of the annual renewable factor. Accordingly the inclusion of battery system to these hybrid scenarios gives a 30.4% and 20.3 % boost to the renewable factor value respectively. Although the inclusion of battery energy storage into the hybrid systems increases the renewable factor the results imply that it reduces the hydrogen production rate via electrolysis. The optimized values of the levelized cost of electricity and CO2 emission for different scenarios vary in the range of 0.376–0.789 $/kWh and 6.57–9.75 ton respectively. The multi-criteria optimizations improve the levelized cost of electricity and CO2 emission by up to 46.2% and 11.3% with respect to their preliminary design.
Experimental Investigation of High Temperature Oxidation Behaviour of Steels Exposed to Air-fuel Natural Gas or Hydrogen Combustion Atmospheres during Reheating on a Semi-industrial Scale
Jun 2025
Publication
In the future steel products will be reheated for hot working using hydrogen instead of natural gas. This study investigated the differences in oxide scale formation between natural gas/air and hydrogen/air combustion at constant air-fuel-ratio. Samples of a hypo-eutectoid eutectoid and hyper-eutectoid steel grade (dimensions: 30 x 30 x 50 mm W x H x L) were exposed to the two atmospheres in a semi-industrial scale furnace for 180 min at three sample core temperatures (1100 1200 and 1280 °C). Specific mass gain was calculated and the samples were metallographically examined. Switching the fuel increased scale formation depending on the steel. The exponential correlation between temperature and scale formation is more pronounced for the eutectoid and the hyper-eutectoid steel grade. Metallographic investigations revealed similar scale morphologies in both atmospheres but with significant temperature dependence. The decarburization depth is atmosphere-independent. Thus switching fuel does not negatively impact the properties of the steel substrate; it only increases scale formation during reheating.
Hydrogen Refueling Station: Overview of the Technological Status and Research Enhancement
Jan 2023
Publication
Hydrogen refueling stations (HRSs) are key infrastructures rapidly spreading out to support the deployment of fuel cell electric vehicles for several mobility purposes. The research interest in these energy systems is increasing focusing on different research branches: research on innovation on equipment and technology proposal and development of station layout and research aiming to provide experimental data sets for perfor mance investigation. The present manuscript aims to present an overview of the most recent literature on hydrogen stations by presenting the technological status of the system at the global level and their research enhancement on the involved components and processes. After the review of the mentioned aspects this paper will present the already existing layouts and the potential configurations of such infrastructures considering several options of the delivery routes the end-user destination and hydrogen storage thermodynamic status whether liquid or gaseous.
Mechanical Testing Methods for Assessing Hydrogen Embrittlement in Pipeline Steels: A Review
Oct 2025
Publication
As the transport of gaseous hydrogen and its use as a low carbon-footprint energy vector become increasingly likely scenarios both the scientific literature and technical standards addressing the compatibility of pipeline steels with high-pressure hydrogen environments are rapidly expanding. This work presents a detailed review of the most relevant hydrogen embrittlement testing methodologies proposed in standards and the academic literature. The focus is placed on testing approaches that support design-oriented assessments rather than simple alloy qualification for hydrogen service. Particular attention is given to tensile tests (conducted on smooth and notched specimens) as well as to J-integral and fatigue tests performed following the fracture mechanics’ approach. The influences of hydrogen partial pressure and deformation rate are critically examined as these parameters are essential for ensuring meaningful comparisons across different studies.
Renewable Energy Storage in a Poly-Generative System Fuel Cell/Electrolyzer, Supporting Green Mobility in a Residential Building
Oct 2025
Publication
The European Commission through the REPowerEU plan and the “Fit for 55” package aims to reduce fossil fuel dependence and greenhouse gas emissions by promoting electric and fuel cell hybrid electric vehicles (EV-FCHEVs). The transition to this mobility model requires energy systems that are able to provide both electricity and hydrogen while reducing the reliance of residential buildings on the national grid. This study analyses a poly-generative (PG) system composed of a Solid Oxide Fuel Cell (SOFC) fed by biomethane a Photovoltaic (PV) system and a Proton Exchange Membrane Electrolyser (PEME) with electric vehicles used as dynamic storage units. The assessment is based on simulation tools developed for the main components and applied to four representative seasonal days in Rende (Italy) considering different daily travel ranges of a 30-vehicle fleet. Results show that the PG system provides about 27 kW of electricity 14.6 kW of heat and 3.11 kg of hydrogen in winter spring and autumn and about 26 kW 14 kW and 3.11 kg in summer; it fully covers the building’s electrical demand in summer and hot water demand in all seasons. The integration of EV batteries reduces grid dependence improves renewable self-consumption and allows for the continuous and efficient operation of both the SOFC and PEME demonstrating the potential of the proposed system to support the green transition.
Hydrogen Valleys to Foster Local Decarbonisation Targets: A Multiobjective Optimisation Approach for Energy Planning
Oct 2025
Publication
Hydrogen Valley represents localised ecosystems that enable the integrated production storage distribution and utilisation of hydrogen to support the decarbonisation of the energy system. However planning such integrated systems necessitates a detailed evaluation of their interconnections with variable renewable generation sector coupling and system flexibility. The novelty of this work lies in addressing a critical gap in system-level modelling for Hydrogen Valleys by introducing an optimization-based framework to determine their optimal configuration. This study focuses on the scenario-based multiobjective design of local hydrogen energy systems considering renewable integration infrastructure deployment and sector coupling. We developed and simulated three scenarios based on varying hydrogen pathways and penetration levels using the EnergyPLAN model implemented through a custom MATLAB Toolbox. Several decision variables such as renewable energy capacity electrolyser size and hydrogen storage were optimised to minimise CO₂ emissions total annual system cost and critical excess electricity production simultaneously. The findings show that Hydrogen Valley deployment can reduce CO₂ emissions by up to 30 % triple renewable penetration in the primary energy supply and lower the levelized cost of hydrogen from 7.6 €/kg to 5.6 €/kg despite a moderate increase in the total cost of the system. The approach highlights the potential of sector coupling and Power-to-X technologies in enhancing system flexibility and supporting green hydrogen integration. The outcome of our research offers valuable insights for policymakers and planners seeking to align local hydrogen strategies with broader decarbonisation targets and regulatory frameworks.
Altering Carbonate Wettability for Hydrogen Storage: The Role of Surfactant and CO2 Floods
Oct 2025
Publication
Underground hydrogen storage (UHS) in depleted oil and gas fields is pivotal for balancing large-scale renewable-energy systems yet the wettability of reservoir rocks in contact with hydrogen after decades of Enhanced Oil Recovery (EOR) operations remains poorly quantified. This work experimentally investigates how two common EOR legacies cationic surfactant (city-trimethyl-ammonium bromide CTAB) and supercritical carbon dioxide (SC–CO2) flooding alter rock–water–Hydrogen (H2) wettability in carbonate formations. Contact angles were measured on dolomite and limestone rock slabs at 30–75 ◦C and 3.4–17.2 MPa using a high-pressure captive-bubble cell. Crude-oil aging shifted clean dolomite from strongly water-wet (θ ~ 28–29◦) to intermediate-wet (θ ≈ 84◦). Subsequent immersion in dilute CTAB solutions (0.5–2 wt %) fully reversed this effect restoring or surpassing the original water-wetness (θ ≈ 21–28◦). Limestone samples exposed to SC-CO2 at 60–80 ◦C became more hydrophilic (θ ≈ 18–30◦) relative to untreated controls; moderate carbonate dissolution (≤6 × 103 ppm Ca2+) produced the most significant improvement in water-wetness whereas severe dissolution yielded diminishing returns. These findings show that many mature reservoirs are already water-wet (post-CO2) or can be easily re-wetted (via residual CTAB). Across all scenarios sample wettability showed little sensitivity to pressure but higher temperature consistently promoted stronger water-wetness. Future work should include dynamic core-flooding experiments with realistic reservoir.
Techno-Economic Assessment of Hydrogen-Based Power-to-Power Systems: Operational Strategies and Feasibility Within Energy Communities
Jun 2025
Publication
In the context of the evolving energy landscape the need to harness renewable energy sources (RESs) has become increasingly imperative. Within this framework hydrogen emerges as a promising energy storage vector offering a viable solution to the flexibility challenges caused by the inherent variability of RESs. This work investigates the feasibility of integrating a hydrogen-based energy storage system within an energy community in Barcelona using surplus electricity from photovoltaic (PV) panels. A power-to-power configuration is modelled through a comprehensive methodology that determines optimal component sizing based on high-resolution real-world data. This analysis explores how different operational strategies influence the system’s cost-effectiveness. The methodology is thus intended to assist in the early-stage decision-making process offering a flexible approach that can be adapted to various market conditions and operational scenarios. The results show that under the current conditions the combination of PV generation energy storage and low-cost grid electricity purchases yield the most favourable outcomes. However in a long-term perspective considering projected cost reductions for hydrogen technologies strategies including energy sales back to the grid become more profitable. This case study offers a practical example of balancing engineering and economic considerations providing replicable insights for designing hydrogen storage systems in similar energy communities.
Innovative Aircraft Propulsive Configurations: Technology Evaluation and Operations in the SIENA Project
Mar 2025
Publication
In this paper developed in the context of the Clean Sky 2 project SIENA (Scalability Investigation of hybrid-Electric concepts for Next-generation Aircraft) an extensive analysis is carried out to identify and accelerate the development of innovative propulsion technologies and architectures that can be scaled across five aircraft categories from small General Aviation airplanes to long-range airliners. The assessed propulsive architectures consider various components such as batteries and fuel cells to provide electricity as well as electric motors and jet engines to provide thrust combined to find feasible aircraft architectures that satisfy certification constraints and deliver the required performance. The results provide a comprehensive analysis of the impact of key technology performance indicators on aircraft performance. They also highlight technology switching points as well as the potential for scaling up technologies from smaller to larger aircraft based on different hypotheses and assumptions concerning the upcoming technological advancements of components crucial for the decarbonization of aviation. Given the considered scenarios the common denominator of the obtained results is hydrogen as the main energy source. The presented work shows that for the underlying models and technology assumptions hydrogen can be efficiently used by fuel cells for propulsive and system power for smaller aircraft (General Aviation commuter and regional) typically driven by propellers. For short- to long-range jet aircraft direct combustion of hydrogen combined with a fuel cell to power the on-board subsystems appears favorable. The results are obtained for two different temporal scenarios 2030 and 2050 and are assessed using Payload-Range Energy Efficiency as the key performance indicator. Naturally introducing such innovative architectures will face a lack of applicable regulation which could hamper a smooth entry into service. These regulatory gaps are assessed detailing the level of maturity in current regulations for the different technologies and aircraft categories.
Green Hydrogen: A Pathway to Vietnam’s Energy Security
Oct 2025
Publication
Green hydrogen is increasingly recognized as a pivotal energy carrier in the global transition toward low-carbon energy systems. Beyond its established applications in industry and transportation the development of green hydrogen could accelerate its integration into the power generation sector thus enabling a more sustainable deployment of renewable energy sources. Vietnam endowed with abundant renewable energy potential—particularly solar and wind—has a strong foundation for green hydrogen. This emerging energy source holds significant potential to support the strategic objectives in recent national energy policies aligning with the country’s socio-economic development. However despite this promise the integration of green hydrogen into Vietnam’s energy system remains limited. This paper provides a critical review of the current landscape of green hydrogen in Vietnam examining both the opportunities and challenges associated with its production and deployment. Special attention is given to regulatory frameworks infrastructure readiness and economic viability. Additionally the study also explores the potential of green hydrogen in enhancing energy security within the context of the national energy transition.
Development of an Experimental Setup for Testing X52 Steel SENT Specimens in Electrolytic Hydrogen to Explore Repurposing Potential of Pipelines
Apr 2025
Publication
Hydrogen is considered a key alternative to fossil fuels in the broader context of ecological transition. Repurposing natural gas pipelines for hydrogen transport is one of the challenges of this approach. However hydrogen can diffuse into metallic lattices leading to hydrogen embrittlement (HE). For this reason typically ductile materials can experience unexpected brittle fractures and it is therefore necessary to assess the HE propensity of the current pipeline network to ensure its fitness for hydrogen transport. This study examines the relationship between the microstructure of the circumferential weld joint in X52 pipeline steel and hydrogen concentration introduced electrolytically. Base material heat affected zone and fused zone were subjected to 1800 3600 7200 and 14400 s of continuous charging with a current density J = − 10 mA/cm2 in an acid solution. Results showed that the fusion zone absorbed the most hydrogen across all charging times while the base material absorbed more hydrogen than the heat-affected zone due to the presence of non-metallic inclusions. Fracture toughness was assessed using single edge notch tension specimens (SENT) in air and electrolytic hydrogen. Results indicate that the base material is particularly vulnerable to hydrogen environments exhibiting the greatest reduction in toughness when exposed to hydrogen compared to air.
Multi-Fuel SOFC System Modeling for Ship Propulsion: Comparative Performance Analysis and Feasibility Assessment of Ammonia, Methanol and Hydrogen as Marine Fuels
Oct 2025
Publication
To reduce fossil fuel dependency in shipping adopting alternative fuels and innovative propulsion systems is essential. Solid Oxide Fuel Cells (SOFC) powered by hydrogen carriers represent a promising solution. This study investigates a multi-fuel SOFC system for ocean-going vessels capable of operating with ammonia methanol or hydrogen thus enhancing bunkering flexibility. A thermodynamic model is developed to simulate the performance of a 3 kW small-scale system subsequently scaling up to a 10 MW configuration to meet the power demand of a container ship used as the case study. Results show that methanol is the most efficient fueling option reaching a system efficiency of 58% while ammonia and hydrogen reach slightly lower values of about 55% and 51% respectively due to higher auxiliary power consumption. To assess technical feasibility two installation scenarios are considered for accommodating multiple fuel tanks. The first scenario seeks the optimal fuel share equivalent to the diesel tank’s chemical energy (17.6 GWh) minimizing mass increase. The second scenario optimizes the fuel share within the available tank volume (1646 m3 ) again minimizing mass penalties. In both cases feasibility results have highlighted that changes are needed in terms of cargo reduction equal to 20.3% or alternatively in terms of lower autonomy with an increase in refueling stops. These issues can be mitigated by the benefits of increased bunkering flexibility
Simulation of a Hybrid Plant with ICE/HT-PEMFC and On-Site Hydrogen Production from Methane Steam Reforming
Oct 2025
Publication
Hydrogen-based technologies prominently fuel cells are emerging as strategic solutions for decarbonization. They offer an efficient and clean alternative to fossil fuels for electricity generation making a tangible contribution to the European Green Deal climate objectives. The primary issue is the production and transportation of hydrogen. An on-site hydrogen production system that includes CO2 capture could be a viable solution. The proposed power system integrates an internal combustion engine (ICE) with a steam methane reformer (SMR) equipped with a CO2 capture and energy storage system to produce “blue hydrogen”. The hydrogen fuels a high-temperature polymer electrolyte membrane (HTPEM) fuel cell. A battery pack incorporated into the system manages rapid fluctuations in electrical load ensuring stability and continuity of supply and enabling the fuel cell to operate at a fixed point under nominal conditions. This hybrid system utilizes natural gas as its primary source reducing climate-altering emissions and representing an efficient and sustainable solution. The simulation was conducted in two distinct environments: Thermoflex code for the integration of the engine reformer and CO2 capture system; and Matlab/Simulink for fuel cell and battery pack sizing and dynamic system behavior analysis in response to user-demanded load variations with particular attention to energy flow management within the simulated electrical grid. The main results show an overall efficiency of the power system of 39.9% with a 33.5% reduction in CO2 emissions compared to traditional systems based solely on internal combustion engines.
Sustainable Hydrogen Production from Nuclear Energy
Aug 2025
Publication
The rapid increase in global warming requires that sustainable energy choices aimed at achieving net-zero greenhouse gas emissions be implemented as soon as possible. This objective emerging from the European Green Deal and the UN Climate Action could be achieved by using clean and efficient energy sources such as hydrogen produced from nuclear power. “Renewable” hydrogen plays a fundamental role in decarbonizing both the energy-intensive industrial and transport sectors while addressing the global increase in energy consumption. In recent years several strategies for hydrogen production have been proposed; however nuclear energy seems to be the most promising for applications that could go beyond the sole production of electricity. In particular nuclear advanced reactors that operate at very high temperatures (VHTR) and are characterized by coolant outlet temperatures ranging between 550 and 1000 ◦C seem the most suitable for this purpose. This paper describes the potential use of nuclear energy in coordinated and coupled configurations to support clean hydrogen production. Operating conditions energy requirements and thermodynamic performance are described. Moreover gaps that require additional technology and regulatory developments are outlined. The intermediate heat exchanger which is the key component for the integration of nuclear hybrid energy systems was studied by varying the thermal power to determine physical parameters needed for the feasibility study. The latter consisting of the comparative cost evaluation of some nuclear hydrogen production methods was carried out using the HEEP code developed by the IAEA. Preliminary results are presented and discussed.
Feasibility Assessment and Response Surface Optimisation of a Fuel Cell-integrated Sustainable Wind Farm in Italy
Sep 2025
Publication
This study explores the design and feasibility of a novel fuel cell-powered wind farm for residential electricity hydrogen/oxygen production and cooling/heating via a compression chiller. Wind turbine energy powers Proton Exchange Membrane (PEM) electrolyzers and a compression chiller unit. The proposed system was modeled using EES thermodynamic software and its economic viability was assessed. A case study across seven Italian regions with varying wind potentials evaluated the system’s feasibility in diverse weather conditions. Multi-objective optimization using Response Surface Methodology (RSM) determined the number of wind turbines as optimum number of electrolyzers & fuel cell units. Optimization results indicated that 37 wind turbines 1 fuel cell unit and 2 electrolyzer units yielded an exergy efficiency of 27.98 % and a cost rate of 619.9 $/h. TOPSIS analysis suggested 32 wind turbines 2 electrolyzers and 2 reverse osmosis units as an alternative configuration. Further twelve different scenarios were examined to enhance the distribution of wind farmgenerated electricity among the grid electrolyzers and reverse osmosis systems. revealing that directing 25 % to reverse osmosis 20 % to electrolyzers and 55 % to grid sales was optimal. Performance analysis across seven Italian cities (Turin Bologna Florence Palermo Genoa Milan and Rome) identified Genoa Palermo and Bologna as the most suitable locations due to favorable wind conditions. Implementing the system in Genoa the optimal site could produce 28435 MWh of electricity annually prevent 5801 tons of CO2 emissions (equivalent to 139218 $). Moreover selling this clean electricity to the grid could meet the annual clean electricity needs of approximately 5770 people in Italy
Towards Decarbonizing Gas: A Generic Optimal Gas Flow Model with Linepack Constraints for Assessing the Feasibility of Hydrogen Blending in Existing Gas Networks
Aug 2025
Publication
Hydrogen blending into natural gas networks is a promising pathway to decarbonize the gas sector but requires bespoke fluid-dynamic models to accurately capture the properties of hydrogen and assess its feasibility. This paper introduces a generalizable optimal transient gas flow model for transporting homogeneous natural gashydrogen mixtures in large-scale networks. Designed for preliminary planning the model assesses whether a network can operate under a given hydrogen blending ratio without violating existing constraints such as pressure limits pipeline and compressor capacity. A distinguishing feature of the model is a multi-day linepack management strategy that engenders realistic linepack profiles by precluding mathematically feasible but operationally unrealistic solutions thereby accurately reflecting the flexibility of the gas system. The model is demonstrated on Western Australia’s 7560 km transmission network using real system topology and demand data from several representative days in 2022. Findings reveal that the system can accommodate up to 20 % mol hydrogen potentially decarbonizing 7.80 % of gas demand.
Biohydrogen Production from Industrial Waste: The Role of Pretreatment Methods
Oct 2025
Publication
This study aimed to investigate the effectiveness of dark fermentation in biohydrogen production from agro-industrial wastes including apple pomace brewer’s grains molasses and potato powder subjected to different pretreatment methods. The experiments were conducted at a laboratory scale using 1000 cm3 anaerobic reactors at a temperature of 35 ◦C and anaerobic sludge as the inoculum. The highest yield of hydrogen was obtained from pre-treated apple pomace (101 cm3/g VS). Molasses a less complex substrate compared to the other raw materials produced 25% more hydrogen yield following pretreatment. Methanogens are sensitive to high temperatures and low-pH conditions. Nevertheless methane constituted 1–6% of the total biogas under these conditions. The key factor was appropriate treatment of the inoculum to limit competition from methanogens. Increasing the inoculum dose from 150 cm3/dm3 to 250 cm3/dm3 had no further effect on biogas production. The physicochemical parameters and VFA data confirmed the stability and usefulness of activated sludge as a source of microbial cultures for H2 production via dark fermentation.
Evaluation of Passenger Train Safety in the Event of a Liquid Hydrogen Release from a Freight Train in a Tunnel Along an Italian High-Speed/High-Capacity Rail Line
Oct 2025
Publication
The global shift towards cleaner energy sources is driving the adoption of hydrogen as an environmentally friendly alternative to fossil fuels. Among the forms currently available Liquid Hydrogen (LH2) offers high energy density and efficient storage making it suitable for large-scale transport by rail. However the flammability of hydrogen poses serious safety concerns especially when transported through confined spaces such as railway tunnels. In case of an accidental LH2 release from a freight train the rapid accumulation and potential ignition of hydrogen could cause catastrophic consequences especially if freight and passenger trains are present simultaneously in the same tunnel tube. In this study a three-dimensional computational fluid dynamics model was developed to simulate the dispersion and explosion of LH2 following an accidental leak from a freight train’s cryo-container in a single-tube double-track railway tunnel when a passenger train queues behind it on the same track. The overpressure results were analyzed using probit functions to estimate the fatality probabilities for the passenger train’s occupants. The analysis suggests that a significant number of fatalities could be expected among the passengers. However shorter users’ evacuation times from the passenger train’s wagons and/or longer distances between the two types of trains might reduce the number of potential fatalities. The findings by providing additional insight into the risks associated with LH2 transport in railway tunnels indicate the need for risk mitigation measures and/or traffic management strategies.
Exploring the Potential of Ammonia as a Fuel: Advances in Combustion Understanding and Large-scale Furnace Applications
Sep 2025
Publication
From an environmental standpoint carbon-free energy carriers such as ammonia and hydrogen are essential for future energy systems. However their hightemperature chemical behavior remains insufficiently understood posing challenges for the development and optimization of advanced combustion technologies. Ammonia in particular is globally available and cost-effective especially for energy-intensive industries. The addition of ammonia or hydrogen to methane significantly reduces the accuracy of existing predictive models. Therefore validated and detailed data are urgently needed to enable reliable design and performance predictions. This review highlights the compatibility of ammonia with existing combustion infrastructure facilitating a smoother transition to more sustainable heating methods without the need for entirely new systems. Applications in high-temperature heating processes such as metal processing ceramics and glass production and power generation are of particular interest. This review focuses on the systematic assessment of alternative fuel mixtures comprising ammonia and hydrogen as well as natural gas with particular consideration of existing safety-related parameters and combustion characteristics. Fundamental quantities such as the laminar burning velocity are discussed in the context of their relevance for fuel mixtures and their scalability toward turbulent flame propagation which is of critical importance for industrial burner and reactor design. The influence of fuel composition on ignition limits is examined as these are essential parameters for safety margin definitions and operational boundary conditions. Furthermore flame stability in mixed-fuel systems is addressed to evaluate the practical feasibility and robustness of combustion under varying process conditions. A detailed overview of current diagnostic and analysis methods follows encompassing both pollutant measurement techniques and the detection of key radical species. These diagnostics form the experimental basis for reaction kinetics modeling and mechanism validation. Given the importance of emission formation in combustion systems a dedicated subsection summarizes major emission trends even though a comprehensive treatment would exceed the scope of this review. Thermal radiation effects which are highly relevant for heat transfer and system efficiency in large-scale applications are then reviewed. In parallel current developments in numerical simulation approaches for industrial-scale combustion systems are presented including aspects of model accuracy boundary conditions and computational efficiency. The review also incorporates insights from materials engineering particularly regarding high-temperature material performance corrosion resistance and compatibility with combustion products. Based on these interdisciplinary findings operational strategies for high-temperature furnaces are outlined and selected industrial reference systems are briefly presented. This integrated approach aims to support the design optimization and safe operation of next-generation combustion technologies utilizing carbon-free or low-carbon fuels.
Learning in Green Hydrogen Production: Insights from a Novel European Dataset
Jun 2025
Publication
The cost reduction of electrolysers is critical for scaling up green hydrogen production and achieving decarbonization targets. This study presents a novel and comprehensive dataset of electrolyser projects in Europe. It includes full cost and capacity details for each project and capturing project-specific characteristics such as technology type location and project type for the period 2005–2030. We apply the learning curve methodology to assess cost reductions across different electrolyser technologies and project sizes. Our findings indicate a significant learning effect for PEM and AEL electrolysers in the last 20 years with learning rates of 32.1% and 22.9% respectively. While AEL cost reductions are primarily driven by scaling effects PEM electrolysers benefit from both technological advancements and economies of scale. Small-scale electrolysers exhibit a stronger learning effect (25%) whereas large-scale projects show no clear cost reductions due to their early stage of deployment. Projections based on our learning rates suggest that reaching Europe’s 2030 target of 40 GW electrolyser capacity would require an estimated total investment of 14 billion EUR. These results align closely with previous studies and such predictions are closed to estimates from other organization. The dataset is publicly available allowing for further analysis and periodic updates to track cost trends.
Underground Hydrogen Storage Suitability Index: A Geological Tool for Evaluating and Ranking Storage Sites
Jun 2025
Publication
Underground Hydrogen Storage (UHS) is a promising solution to maximize the use of hydrogen as an energy carrier. This study presents a standardized methodology for assessing UHS quality by introducing the Underground Hydrogen Storage Suitability Index (UHSSI) which integrates three sub-indices: the Caprock Potential Index (CPI) the Reservoir Quality Index (RQI) and the Site Potential Index (SPI). Parameters such as porosity permeability lithology caprock thickness depth temperature and salinity are evaluated and ranked from 0 (unsuitable) to 5 (excellent). The methodology was validated using data from six worldwide sites including salt caverns and aquifers. Sites like Moss Bluff Clemens Dome and Spindletop (USA) scored highly while Teesside (UK) Lobodice (Czech Republic) and Beynes (France) were classified as unsuitable due to shallow depths and microbial activity. A software tool the UHSSI Calculator was developed to automate site evaluations. This approach offers a cost-effective tool for preliminary screening and supports the safer development of UHS.
Hydrogen Generation through Solar Photocatalytic Processes: A Review of the Configuration and the Properties of Effective Metal-Based Semiconductor Nanomaterials
Oct 2017
Publication
Photocatalytic water splitting and organic reforming based on nano-sized composites are gaining increasing interest due to the possibility of generating hydrogen by employing solar energy with low environmental impact. Although great efforts in developing materials ensuring high specific photoactivity have been recently recorded in the literature survey the solar-to-hydrogen energy conversion efficiencies are currently still far from meeting the minimum requirements for real solar applications. This review aims at reporting the most significant results recently collected in the field of hydrogen generation through photocatalytic water splitting and organic reforming with specific focus on metal-based semiconductor nanomaterials (e.g. metal oxides metal (oxy)nitrides and metal (oxy)sulfides) used as photocatalysts under UVA or visible light irradiation. Recent developments for improving the photoefficiency for hydrogen generation of most used metal-based composites are pointed out. The main synthesis and operating variables affecting photocatalytic water splitting and organic reforming over metal-based nanocomposites are critically evaluated.
Net-Zero Backup Solutions for Green Ammonia Hubs Based on Hydrogen Power Generation
Jun 2025
Publication
This paper explores cleaner and techno-economically viable solutions to provide electricity heat and cooling using green hydrogen (H2) and green ammonia (NH3) across the entire decarbonized value chain. We propose integrating a 100% hydrogen-fueled internal combustion engine (e.g. Jenbacher JMS 420) as a stationary backup solution and comparing its performance with other backup technologies. While electrochemical storage systems or battery energy storage systems (BESSs) offer fast and reliable short-term energy buffering they lack flexibility in relocation and typically involve higher costs for extended backup durations. Through five case studies we highlight that renewable-based energy supply requires additional capacity to bridge longer periods of undersupply. Our results indicate that for cost reasons battery–electric solutions alone are not economically feasible for longterm backup. Instead a more effective system combines both battery and hydrogen storage where batteries address daily fluctuations and hydrogen engines handle seasonal surpluses. Despite lower overall efficiency gas engines offer favorable investment and operating costs in backup applications with low annual operating hours. Furthermore the inherent fuel flexibility of combustion engines eventually will allow green ammonia-based backup systems particularly as advancements in small-scale thermal cracking become commercially available. Future studies will address CO2 credit recognition carbon taxes and regulatory constraints in developing more effective dispatch and master-planning solutions.
Green Hydrogen Generation by Water Photoelectrolysis: Economic and Environmental Analysis
Mar 2025
Publication
Water photoelectrolysis cells based on photoelectrochemical water splitting seem to be an interesting alternative to other traditional green hydrogen generation processes (e.g. water electrolysis). Unfortunately the practical application of this technology is currently hindered by several difficulties: low solar-to-hydrogen (STH) efficiency expensive electrode materials etc. A novel concept based on a tandem photoelectrolysis cell configuration with an anion-conducting membrane separating the photoanode from the photocathode has already been proposed in the literature. This approach allows the use of low-cost metal oxide electrodes and nickel-based co-catalysts. In this paper we conducted a study to evaluate the economic and environmental sustainability of this technology using the environmental life cycle cost. Preliminary results have revealed two main interesting aspects: the negligible percentage of externalities in the total cost.
Digital Twin Framework for Energy Transition in Gas Networks Based on Open-Source Tools: Methodology and Case Study in Southern Italy
Oct 2025
Publication
The ongoing digitalization of energy infrastructure is a crucial enabler for improving efficiency reliability and sustainability in gas distribution networks especially in the context of decarbonization and the integration of alternative energy carriers (e.g. renewable gases including biogas green hydrogen). This study presents the development and application of a Digital Twin framework for a real-world gas distribution network developed using open-source tools. The proposed methodology covers the entire digital lifecycle: from data acquisition through smart meters and GIS mapping to 3D modelling and simulation using tools such as QGIS FreeCAD and GasNetSim. Consumption data are collected processed and harmonized via Python-based workflows hourly simulations of network operation including pressure flow rate and gas quality indicators like the Wobbe Index. Results demonstrate the effectiveness of the Digital Twin in accurately replicating real network behavior and supporting scenario analyses for the introduction of greener energy vectors such as hydrogen or biomethane. The case study highlights the flexibility and transparency of the workflow as well as the critical importance of data quality and availability. The framework provides a robust basis for advanced network management optimization and planning offering practical tools to support the energy transition in the gas sector.
Wetting of the Microporous Layer at the Cathode of an Anion Exchange Membrane Water Electrolyzer
Aug 2025
Publication
Water management is crucial for the performance of anion exchange membrane water electrolyzers (AEM-WEs) to maintain membrane hydration and enable phase separation between hydrogen gas and liquid water. Therefore careful material selection for the anode and cathode is essential to enhance reactant/product transport and optimize water management under ‘dry cathode’ conditions. This study investigates the wetting characteristics of two commercially available porous transport layers (PTLs) used in AEM-WE: carbon paper and carbon paper with a microporous layer (MPL). Wettability was measured under static quasi-static and dynamic conditions to assess the effect of water and electrolytes (NaOH KOH K2CO3) across concentrations (up to 1 M) and operational temperatures (20 °C to 92 °C). Carbon paper exhibits mild hydrophobicity (advancing contact angles of ∼120° however with receding contact angle ∼0°) whereas carbon paper with MPL demonstrates superhydrophobicity (advancing and receding contact angles >145° and low contact angle hysteresis) maintaining a stable Cassie-Baxter wetting state. Dynamic wetting experiments confirmed the robustness of the superhydrophobicity in carbon paper with MPL facilitating phase separation between hydrogen gas and liquid water. The presence of supporting electrolytes did not significantly affect wettability and the materials retained hydrophobic properties across different temperatures. These findings highlight the importance of MPLs in optimizing water transport and gas rejection within AEM-WEs ensuring efficient and stable operation under “dry cathode” conditions. These PTLs (with and without the addition of the MPL) were integrated into AEM-WE and polarization curves were run. Preliminary data in a specific condition suggested the presence of the MPL within the PTL enhance AEM-WE performance.
Techno-Economic Analysis of Marine Hybrid Clusters for Use in Chile and Mexico
Oct 2025
Publication
This study assesses the feasibility and profitability of marine hybrid clusters combining wave energy converters (WECs) and offshore wind turbines (OWTs) to power households and marine aquaculture. Researchers analyzed two coastal sites: La Serena Chile with high and consistent wave energy resources and Ensenada Mexico with moderate and more variable wave power. Two WEC technologies Wave Dragon (WD) and Pelamis (PEL) were evaluated alongside lithium-ion battery storage and green hydrogen production for surplus energy storage. Results show that La Serena’s high wave power (26.05 kW/m) requires less hybridization than Ensenada’s (13.88 kW/m). The WD device in La Serena achieved the highest energy production while PEL arrays in Ensenada were more effective. The PEL-OWT cluster proved the most cost-effective in Ensenada whereas the WD-OWT performed better in La Serena. Supplying electricity for seaweed aquaculture particularly in La Serena proves more profitable than for households. Ensenada’s clusters generate more surplus electricity suitable for the electricity market or hydrogen conversion. This study emphasizes the importance of tailoring emerging WEC systems to local conditions optimizing hybridization strategies and integrating consolidated industries such as aquaculture to enhance both economic and environmental benefits.
e-REFORMER for Sustainable Hydrogen Production: Enhancing Efficiency in the Steam Methane Reforming Process
Aug 2025
Publication
Electrifying heat supply in chemical processes offers a strategic pathway to reduce CO2 emissions associated with fossil fuel combustion. This study investigates the retrofit of an existing terrace-wall Steam Methane Reformer (SMR) in an ammonia plant by replacing fuel-fired burners with electric resistance heaters in the radiant section. The proposed e-REFORMER concept is applied to a real-world case producing hydrogen-rich syngas at 29000 Nm3 /h with simulation and energy analysis performed using Aspen HYSYS®. The results show that electric heating reduces total thermal input by 3.78 % lowers direct flue gas CO2 emissions by 91.56 % and improves furnace thermal efficiency from 85.6 % to 88.9 % (+3.3 %). The existing furnace design and convection heat recovery system are largely preserved maintaining process integration and plant operability. While the case study reflects a medium-scale plant the methodology applies to larger facilities and supports integration with decarbonised power grids and Carbon Capture Utilisation and Storage (CCUS) technologies. This work advances current literature by addressing full-system integration of electrification within hydrogen and ammonia production chains offering a viable pathway to improve energy efficiency and reduce industrial emissions.
Hydrogen Energy Systems for Decarbonizing Smart Cities and Industrial Applications: A Review
Oct 2025
Publication
Hydrogen is increasingly recognized as a key energy vector for achieving deep decarbonization across urban and industrial sectors. Supporting global efforts to reduce greenhouse gas (GHG) emissions and achieve the Sustainable Development Goals (SDGs) it is essential to understand the multi-sectoral role of the hydrogen value chain spanning production storage and end-use applications with particular emphasis on smart city systems and industrial processes. Green hydrogen production technologies including alkaline water electrolysis (AWE) proton exchange membrane (PEM) electrolysis anion exchange membrane (AEM) electrolysis and solid oxide electrolysis cells (SOECs) are evaluated in terms of efficiency scalability and integration potential. Storage pathways are examined across physical storage (compressed gas cryo-compressed and liquid hydrogen) material-based storage (solid-state absorption in metal hydrides and chemical carriers such as LOHCs and ammonia) and geological storage (salt caverns depleted gas reservoirs and deep saline aquifers) highlighting their suitability for urban and industrial contexts. In the smart city domain hydrogen is analyzed as an enabler of zero-emission transportation low-carbon residential and commercial heating and renewable-integrated smart grids with long-duration storage capabilities. System-level studies demonstrate that coordinated integration of these applications can deliver higher overall energy efficiency deeper reductions in life-cycle GHG emissions and improved resilience of urban energy systems compared with sector-specific approaches. Policy frameworks safety standards and digitalization strategies are reviewed to illustrate how hydrogen infrastructure can be embedded into interconnected urban energy systems. Furthermore industrial applications focus on hydrogen’s potential to decarbonize energy-intensive processes and enable sector coupling between electricity heat and manufacturing. The environmental implications of hydrogen deployment are also considered including resource efficiency life-cycle emissions and ecosystem impacts. In contrast to reviews addressing isolated aspects of hydrogen technologies this study synthesizes technological infrastructural and policy dimensions integrating insights from over 400 studies to highlight the multifaceted role of hydrogen in sustainable urban development and industrial decarbonization and the added benefits achievable through coordinated cross-sector deployment strategies.
Hydrogen Cargo Bikes as a Data-driven Solution for Last-mile Decarbonization
Oct 2025
Publication
The growing demand for low-emission urban freight has intensified efficiency challenges in lastmile delivery especially in dense city centres. This study assesses hydrogen-powered cargo bikes as a scalable zero-emission alternative to fossil fuel vans and battery-electric cargo bikes. Using real-world logistics data from Rome we apply simulation models including Monte Carlo cost analysis Artificial Intelligence driven routing K-means station placement and fleet scaling. Results show hydrogen bikes deliver 15% more parcels daily than electric counterparts reduce refuelling detours by 31.4% and lower per-trip fuel use by 32%. They can cut up to 120 metric tons of CO2 annually per 100-bike fleet. While battery-electric cargo bikes remain optimal for short trips hydrogen bikes offer superior uptime range and rapid refuelling—ideal for highfrequency mid-distance logistics. Under supportive pricing and infrastructure hydrogen cargo bikes represent a resilient and sustainable solution for decarbonizing last-mile delivery in city areas.
Ammonia–Hydrogen Dual-Fuel Combustion: Strategies for Optimizing Performance and Reducing Emissions in Internal Combustion Engines
Jun 2025
Publication
The urgent need to mitigate climate change and reduce greenhouse gas emissions has accelerated the search for sustainable and scalable energy carriers. Among the different alternatives ammonia stands out as a promising carbon-free fuel thanks to its high energy density efficient storage and compatibility with existing infrastructure. Moreover it can be produced through sustainable green processes. However its application in internal combustion engines is limited by several challenges including low reactivity narrow flammability limits and high ignition energy. These factors can compromise combustion efficiency and contribute to increased unburned ammonia emissions. To address these limitations hydrogen has emerged as a complementary fuel in dual-fuel configurations with ammonia. Hydrogen’s high reactivity enhances flame stability ignition characteristics and combustion efficiency while reducing emissions of unburned ammonia. This review examines the current status of dual-fuel ammonia and hydrogen combustion strategies in internal combustion engines and summarizes the experimental results. It highlights the potential of dual-fuel systems to optimize engine performance and minimize emissions. It identifies key challenges knowledge gaps and future research directions to support the development and widespread adoption of ammonia–hydrogen dual-fuel technologies.
Green Hydrogen in the Alps: Mapping Local Stakeholders Perspectives and Identifying Opportunities for Decarbonization
Jun 2025
Publication
The effects of climate change and reliance on fossil fuels in the Alps highlight the need for energy sufficiency improved efficiency and renewable energy deployment to support decarbonization goals. Hydrogen has gained attention as a versatile zero-emission energy carrier with the potential to drive cleaner energy solutions and sustainable tourism in Alpine regions. This study shares findings from a hydrogen survey conducted within the Interreg Alpine Space AMETHyST project which included questionnaires and roundtable discussions across Alpine territories. The survey explored hydrogen’s role in decarbonizing the Alps gathering insights from local stakeholders about their knowledge expertise needs and targets for hydrogen solutions. It also mapped existing hydrogen initiatives. Results revealed strong interest in hydrogen implementation with many territories eager to launch projects. However high investment and operational costs along with associated risks are key barriers. The absence of clear local hydrogen strategies and of a comprehensive regulatory framework also poses significant challenges. Incentivization schemes could facilitate initiatives and foster local hydrogen economies. The most promising application areas for hydrogen in the Alps are private and public mobility sectors. The residential sector particularly in tourist accommodations also presents potential. Regardless of specific uses developing renewable energy capacity and infrastructure is essential to create green hydrogen ecosystems that can store excess renewable energy from intermittent sources for later use.
Human Toxicity Potential: A Lifecycle Evaluation in Current and Future Frameworks for Hydrogen-Based and Battery Electric Buses in the European Union
Sep 2025
Publication
In recent years governments have promoted the shift to low-emission transport systems with electric and hydrogen vehicles emerging as key alternatives for greener urban mobility. Evaluating zero- or near-zero tailpipe solutions requires a Lifecycle Assessment (LCA) approach accounting for emissions from energy production components and vehicle manufacturing. Such studies mainly address Greenhouse Gas (GHG) emissions while other pollutants are often overlooked. This study compares the Human Toxicity Potential (HTP) of Battery Electric Vehicles (BEVs) Fuel Cell Vehicles (FCVs) Hydrogen Internal Combustion Engine Vehicles (H2ICEVs) and hybrid H2ICEVs for public transport in the European Union. Current and future scenarios (2024 2030 2050) are examined considering evolving energy mixes and manufacturing impacts. Results underline that BEVs are characterized by the highest HTP in 2024 and that this trend is maintained even in future scenarios. As for hydrogen-based powertrains they show lower HTPs similar among them. This work underlines that current efforts must be intensified especially for BEVs to further limit harmful emissions from the mobility sector.
The Green Transition in Commercial Aviation
Aug 2025
Publication
This paper provides a comprehensive review of novel aviation technologies analyzing the advancements and challenges associated with the transition to sustainable air transport. The study explores three key pillars: unconventional aerodynamic configurations novel propulsion systems and advanced materials. Unconventional airframe architectures such as box-wing blended-wing-body and truss-braced wings demonstrate potential for improved aerostructural efficiency and reduced fuel consumption compared to traditional tube-and-wing designs. Aeropropulsive innovations as distributed propulsion boundary layer ingestion and advanced turbofan configurations are also promising in this regard. Significant progress in propulsion technologies including hybrid-electric hydrogen and extensive use of sustainable aviation fuels (SAF) plays a pivotal role in reducing air transport greenhouse gas emissions. However energy storage limitations and infrastructure constraints remain critical challenges and hence in the near future SAF could represent the most feasible solution. The introduction of advanced lightweight materials could further enhance aircraft overall performance. The results presented and discussed in this paper show that there is no a unique solution to the problem of the sustainability of air transport but a combination of all the novel technologies is necessary to achieve the ambitious environmental goals for the air transport of the future.
Designing Off-grid Hybrid Renewable Energy Systems under Uncertainty: A Two-Stage Stochastic Programming Approach
Aug 2025
Publication
The decarbonization of remote energy systems presents both technical and economic challenges due to their dependance on fossil fuels and the variability of renewable energy sources. This study introduces a Two-Stage Stochastic Programming approach to optimize Hybrid Renewable Energy Systems under uncertainty in renewable energy production. The methodology is applied to the island of Pantelleria aiming to minimize Total Annualized Costs and CO2 emissions using an ε-constraint approach. Results show that within the set of optimized configurations stricter CO2 emissions constraints increase costs due to the need for oversized components to ensure supply reliability. Nevertheless even the zeroemissions scenario offers significant economic benefits compared to the current diesel-based system. Total Annualized Costs are reduced from 15.5 M€ to 8.10 M€ in the deterministic case and to 9.37 M€ in the stochastic one. The additional cost in the stochastic configuration is offset by improved reliability ensuring demand is met under all scenarios. A sensitivity analysis on electricity demand reveals the necessity of further larger components leading to a 27.0% cost increase in a fully renewable scenario with stochastic optimization for a 10% demand increase. These findings highlight the importance of stochastic optimization in designing cost-effective off-grid renewable energy systems.
Synergistic Coupling of Waste Heat and Power to Gas via PEM Electrolysis for District Heating Applications
Sep 2025
Publication
This work explores the integration of Proton Exchange Membrane (PEM) electrolysis waste heat with district heating networks (DHN) aiming to enhance the overall energy efficiency and economic viability of hydrogen production systems. PEM electrolysers generate substantial amounts of low-temperature waste heat during operation which is often dissipated and left unutilised. By recovering such thermal energy and selling it to district heating systems a synergistic energy pathway that supports both green hydrogen production and sustainable urban heating can be achieved. The study investigates how the electrolyser’s operating temperature ranging between 50 and 80 ◦C influences both hydrogen production and thermal energy availability exploring trade-offs between electrical efficiency and heat recovery potential. Furthermore the study evaluates the compatibility of the recovered heat with common heat emission systems such as radiators fan coils and radiant floors. Results indicate that valorising waste heat can enhance the overall system performance by reducing the electrolyser’s specific energy consumption and its levelized cost of hydrogen (LCOH) while supplying carbon-free thermal energy for the end users. This integrated approach contributes to the broader goal of sector coupling offering a pathway toward more resilient flexible and resource-efficient energy systems.
High-Performance Two-Stroke Opposed-Piston Hydrogen Engine: Numerical Study on Injection Strategies, Spark Positioning and Water Injection to Mitigate Pre-Ignition
Sep 2025
Publication
In the pursuit of zero-emission mobility hydrogen represents a promising fuel for internal combustion engines. However its low volumetric energy density poses challenges especially for high-performance applications where compactness and lightweight design are crucial. This study investigates the feasibility of an innovative hydrogen-fueled two-stroke opposed-piston (2S-OP) engine targeting a specific power of 130 kW/L and an indicated thermal efficiency above 40%. A detailed 3D-CFD analysis is conducted to evaluate mixture formation combustion behavior abnormal combustion and water injection as a mitigation strategy. Innovative ring-shaped multi-point injection systems with several designs are tested demonstrating the impact of injector channels’ orientation on the final mixture distribution. The combustion analysis shows that a dual-spark configuration ensures faster combustion compared to a single-spark system with a 27.5% reduction in 10% to 90% combustion duration. Pre-ignition is identified as the main limiting factor strongly linked to mixture stratification and high temperatures. To suppress it water injection is proposed. A 55% evaporation efficiency of the water mass injected lowers the in-cylinder temperature and delays pre-ignition onset. Overall the study provides key design guidelines for future high-performance hydrogen-fueled 2S-OP engines.
Development of a MILP Optimization Framework to Design Grid-connected Microgrids: Enhancing Operational Synergy Among Wind, Solar, Batteries, and Hydrogen Storage
Sep 2025
Publication
By integrating Renewable Energy Sources (RES) and storage devices Hybrid Energy Systems (HESs) represent a promising solution for decarbonizing isolated and remote communities. Proper sizing and management of systems comprising a variety of components requires however more advanced methods than conventional energy systems. This study proposes a novel Mixed Integer Linear Programming (MILP) framework for the simultaneous design of a grid-connected HES supported by renewable generators. Unlike the standard design approach based on parametric dispatch strategies this framework simultaneously optimizes the energy management of each system configuration under analysis. The novel approach is applied to size a combination of Li-Ion batteries an alkaline electrolyzer H2 tanks and a PEM fuel cell to maximize the NPV of a system including a wind turbine and a photovoltaic field. Managing thousands of variables at the same time the framework simultaneously optimizes how all components are used to fulfill the load and balance the input/export of power within a limited electrical network. Results show that the combination of BESS and H2 can provide for both the need for short- and long-term energy storage and that the MILP optimization can effectively allocate the energy flows and produce 558 k€ of revenues per year 15.5% of the initial investment cost of 3.6 M€. The investment cost of the system is recovered in six years and presents an NPV of 5.51 M€ after 20 years. Results from the proposed method are also compared to common approaches based on rule-based parametric dispatch strategies demonstrating the superiority of MILP for the design and management of complex HESs.
Hydrogen Direct Reduced Iron Melting in an Electric Arc Furnace: Benefits of In Situ Monitoring
Oct 2025
Publication
The transition toward environmentally friendly steelmaking using hydrogen direct reduced iron as feed material in electric arc furnaces will eventually require process adjustments due to changes in the pellet properties when compared to e.g. blast furnace pellets. To this end the melting of hydrogen direct reduced iron pellets with 68 and 100% reduction degrees and Fe content of 67.24% was investigated in a laboratory-scale electric arc furnace. The presence of iron oxide-rich slag had a significant effect on the arc movement on the melt and an inhibiting effect on iron evaporation. The melting was monitored with video recording and optical emission spectroscopy. The videos were used to monitor the melting behavior whereas optical emissions revealed iron gangue elements and hydrogen from the pellets radiating in the plasma. Furthermore the flow of the melt is well seen in the videos as well as the movement of slag droplets on the melt surface. After the experiments the metal had silica-rich inclusions whereas slag had mostly penetrated into the crucible. The most notable differences in melting behavior can be attributed to the iron oxide-rich slag its interaction with the arc and penetration into the crucible and how it affects the arc movement and heat transfer.
No more items...