Italy
Design and Modeling of a Co-flow Reactor for Turquoise Hydrogen Production
May 2024
Publication
This work focuses on the design of a reactor for producing clean hydrogen from methane pyrolysis in the form of the so-called “turquoise hydrogen”. In addition to its simple geometry the fundamental concept and the main novelty of the proposed method rely on using part of the methane to produce the required heat needed for the thermal decomposition of methane (TDM). The reactor configuration for hydrogen production is shown to produce significant advantages in terms of greenhouse gas (GHG) emissions. A reactive flow CFD model incorporating also soot formation mechanism has been first developed and validated with experimental results available in the literature and then used to design and characterize the performances of proposed reactor configuration. 3D CFD simulations have been carried out to predict the behavior of the reactor configuration; a sensitivity analysis is used for clearing the aspect related to key environmental parameters e.g. the global warming impact (GWI). The real potential of the proposed design resides in the low emissions and high efficiency with which hydrogen is produced at the various operating conditions (very flexible reactor) albeit subject to the presence of carbon by-product. This suggests that this type of methane conversion system could be a good substitute for the most common hydrogen production technologies.
Merging the Green-H2 Production with Carbon Recycling for Stepping Towards the Carbon Cyclic Economy
Jan 2024
Publication
Hydrogen Economy and Cyclic Economy are advocated together with the use of perennial (solar wind hydro geo-power SWHG) and renewable (biomass) energy sources for defossilizing anthropic activities and mitigating climate change. Each option has intrinsic limits that prevent a stand-alone success in reaching the target. Humans have recycled goods (metals water paper and now plastics) to a different extent since very long time. Recycling carbon (which is already performed at the industrial level in the form of CO2 utilization and with recycling paper and plastics) is a key point for the future. The conversion of CO2 into chemicals and materials is carried out since the late 1800s (Solvay process) and is today performed at scale of 230 Mt/y. It is time to implement on a scale of several Gt/y the conversion of CO2 into energy products possibly mimicking Nature which does not use hydrogen. In the short term a few conditions must be met to make operative on a large scale the production of fuels from recycled-C namely the availability of low-cost: i. abundant pure concentrated streams of CO2 ii. non-fossil primary energy sources and iii. non-fossil-hydrogen. The large-scale production of hydrogen by Methane Steam Reforming with CO2 capture (Blue-H2) seems to be a realistic and sustainable solution. Green-H2 could in principle be produced on a large scale through the electrolysis of water powered by perennial primary sources but hurdles such as the availability of materials for the construction of long-living robust electrochemical cells (membranes electrodes) must be abated for a substantial scale-up with respect to existing capacity. The actual political situation makes difficult to rely on external supplies. Supposed that cheap hydrogen will be available its direct use in energy production can be confronted with the indirect use that implies the hydrogenation of CO2 into fuels (E-fuels) an almost ready technology. The two strategies have both pros and cons and can be integrated. E-Fuels can also represent an option for storing the energy of intermittent sources. In the medium-long term the direct co-processing of CO2 and water via co-electrolysis may avoid the production/transport/ use of hydrogen. In the long term coprocessing of CO2 and H2O to fuels via photochemical or photoelectrochemical processes can become a strategic technology.
The Role of Direct Air Capture in EU’s Decarbonisation and Associated Carbon Intensity for Synthetic Fuels Production
May 2023
Publication
Direct air capture (DAC) is considered one of the mitigation strategies in most of the future scenarios trying to limit global temperature to 1.5 ◦C. Given the high expectations placed on DAC for future decarbonisation this study presents an extensive review of DAC technologies exploring a number of techno-economic aspects including an updated collection of the current and planned DAC projects around the world. A dedicated analysis focused on the production of synthetic methane methanol and diesel from DAC and electrolytic hydrogen in the European Union (EU) is also performed where the carbon footprint is analysed for different scenarios and energy sources. The results show that the maximum grid carbon intensity to obtain negative emissions with DAC is estimated at 468 gCO2e/kWh which is compliant with most of the EU countries’ current grid mix. Using only photovoltaics (PV) and wind negative emissions of at least −0.81 tCO2e/tCO2 captured can be achieved. The maximum grid intensities allowing a reduction of the synthetic fuels carbon footprint compared with their fossil-fuels counterparts range between 96 and 151 gCO2e/kWh. However to comply with the Renewable Energy Directive II (REDII) sustainability criteria to produce renewable fuels of non-biological origin the maximum stays between 30.2 to 38.8 gCO2e/kWh. Only when using PV and wind is the EU average able to comply with the REDII threshold for all scenarios and fuels with fuel emissions ranging from 19.3 to 25.8 gCO2e/MJ. These results highlight the importance of using renewable energies for the production of synthetic fuels compliant with the EU regulations that can help reduce emissions from difficult-to-decarbonise sectors.
Energy Storage in Urban Areas: The Role of Energy Storage Facilities, a Review
Feb 2024
Publication
Positive Energy Districts can be defined as connected urban areas or energy-efficient and flexible buildings which emit zero greenhouse gases and manage surpluses of renewable energy production. Energy storage is crucial for providing flexibility and supporting renewable energy integration into the energy system. It can balance centralized and distributed energy generation while contributing to energy security. Energy storage can respond to supplement demand provide flexible generation and complement grid development. Photovoltaics and wind turbines together with solar thermal systems and biomass are widely used to generate electricity and heating respectively coupled with energy system storage facilities for electricity (i.e. batteries) or heat storage using latent or sensible heat. Energy storage technologies are crucial in modern grids and able to avoid peak charges by ensuring the reliability and efficiency of energy supply while supporting a growing transition to nondepletable power sources. This work aims to broaden the scientific and practical understanding of energy storage in urban areas in order to explore the flexibility potential in adopting feasible solutions at district scale where exploiting the space and resource-saving systems. The main objective is to present and critically discuss the available options for energy storage that can be used in urban areas to collect and distribute stored energy. The concerns regarding the installation and use of Energy Storage Systems are analyzed by referring to regulations and technical and environmental requirements as part of broader distribution systems or as separate parts. Electricity heat energy and hydrogen are the most favorable types of storage. However most of them need new regulations technological improvement and dissemination of knowledge to all people with the aim of better understanding the benefits provided.
Optimal RES Integration for Matching the Italian Hydrogen Strategy Requirements
Oct 2023
Publication
In light of the Italian Hydrogen Roadmap goals the 2030 national RES installation targets need to be redefined. This work aims to propose a more appropriate RES installation deployment on national scale by matching the electrolysers capacity and the green hydrogen production goals. The adopted approach envisages the power-to-gas value chain priority for the green hydrogen production as a means of balancing system. Thus the 2030 Italian energy system has been modelled and several RES installation scenarios have been simulated via EnergyPLAN software. The simulation outputs have been integrated with a breakdown model for the overgeneration RES share detection in compliance with the PV dispatching priority of the Italian system. Therefore the best installation solutions have been detected via multi-objective optimization model based on the green hydrogen production additional installation cost critical energy excess along with the Levelized Cost of Hydrogen (LCOH). Higher wind technology installations provide more competitive energy and hydrogen costs. The most suitable scenarios show that the optimal LCOH and hydrogen production values respectively equal to 3.6 €/kg and 223 ktonH2 arise from additional PV/wind installations of 35 GW on top of the national targets.
Numerical Analysis of the Hydrogen-air Mixture Formation Process in a Direct-injection Engine for Off-road Applications
Jun 2024
Publication
Among the different hydrogen premixed combustion concepts direct injection (DI) is one of the most promising for internal combustion engine (ICE) applications. However to fully exploit the benefits of this solution the optimization of the mixture preparation process is a crucial factor. In the present work a study of the hydrogenair mixture formation process in a DI H2-ICE for off-road applications was performed through 3D-CFD simulations. First a sensitivity analysis on the injection timing was carried out to select the optimal injection operating window capable of maximizing mixture homogeneity without a significant volumetric efficiency reduction. Then different spray injector guiding caps were tested to assess their effect on in-cylinder dynamics and mixture characteristics consequently. Finally the impact of swirl intensity on hydrogen distribution has been assessed. The optimization of the combustion chamber geometry has allowed the achievement of significant improvements in terms of mixture homogeneity.
Numerical Modeling for Analysis and Improvement of Hydrogen Refueling Process for Heavy-duty Vehicles
Dec 2024
Publication
This paper presents the development validation and application of a numerical model to simulate the process of refueling hydrogen-powerd heavy-duty vehicles with a cascade hydrohen refueling station design. The model is implemented and validated using experimental data from SAE J2601. The link between the average pressure ramp (APRR) and flow rate which is responsible for the dynamic evolution of the refueling process was analyzed. Various simulations were conducted with a vehicle tank of 230 L and nominal pressure of 35 MPa typical of tanks adopted in heavy-duty vehicles varying the ambient temperature between 0 and 40 °C the cooling temperature of the hydrogen by the system cooling between −40 and 0 °C and the APRR between 2 and 14 MPa/min. The study found that if the ambient temperature does not exceed 30 °C rapid refueling can be carried out with not very low pre-cooling temperatures e.g. -20 °C or − 10 °C guaranteeing greater savings in station management. Cooling system thermal power has been investigated through the analyses in several scenarios with values as high as 38.2 kW under the most challenging conditions. For those conditions it was shown that energy savings could reach as much as 90 %. Furthermore the refueling process was analyzed taking into account SAE J2061/2 limitations and an update was proposed. An alternative strategy was proposed such that the settings allow a higher flow rate to be associated with a given standard pressure ramp. This approach was designed to ensure that the maximum allowable pressure downstream of the pressure control valve as specified by the refueling protocol is reached exactly at the end of the refueling process. It has been observed that the adoption of this strategy has significant advantages. In the case of refueling with higher APPR refueling is about 20 s faster with a single tank with limited increases in temperature and pressure within it.
Harnessing Enhanced Solar Efficiency for Green Hydrogen Production: A Comparative Analysis of PV and PV-T Systems
Dec 2024
Publication
Green hydrogen a critical element in the shift towards sustainable energy is traditionally produced by electrolysis powered by solar photovoltaic (PV) systems. This research explores the potential of underexploited photovoltaic thermal (PV-T) systems for efficient green hydrogen generation. This paper compares this advanced technology performance and economic viability against conventional PV setups. This paper uses TRNSYS simulation software to analyze two distinct solar-based hydrogen production configurations – PV and PV-T – across diverse climatic conditions in Doha Tunis and Stuttgart. The paper’s findings indicate that PV-T significantly outperforms PV in hydrogen generation across diverse climates (Doha Tunis Stuttgart). For instance in Doha PV-T systems increase hydrogen output by 78% in Tunis by 59% and in Stuttgart by 25%. An economic assessment reveals PV panels as the most cost-effective option with hydrogen production costs ranging from $4.92/kg to $9.66/kg across the studied locations. For PV-T collectors the hydrogen cost range from $6.66/kg to $16.80/kg across the studied locations. Nevertheless this research highlights the potential of PV-T technology to enhance the efficiency and economic viability of green hydrogen production. These findings offer valuable insights for policymakers investors and researchers pursuing more efficient solutions for sustainable energy.
Hydrogen Production from Renewable Energy Resources: A Case Study
May 2024
Publication
In the face of increasing demand for hydrogen a feasibility study is conducted on its production by using Renewable Energy Resources (RERs) especially from wind and solar sources with the latter preferring photovoltaic technology. The analysis performed is based on climate data for the Province of Brindisi Apulia Italy. The various types of electrolyzers will be analyzed ultimately choosing the one that best suits the case study under consideration. The technical aspect of the land consumption for RER exploitation until 2050 is analyzed for the Italian case of study and for the Apulia Region. For both the 200 MW and 100 MW RER Power Plants an economic analysis is carried out on the opportunities for using hydrogen. In the last part of the economic analysis the trade-off between the high specific investment cost and the Capacity Factor of Wind technologies is also investigated. The results show the affordability of building high-scale Wind Farms harnessing the existing scale economies. The lowest Hydrogen selling price is achieved by the 200 MW Wind Farms equal to 222 €/MWh against 232 €/MWh of the 200 MW Photovoltaic (PV) Farm. Finally the feasibility analysis considers also the greenhouse gas emission reduction by including in the economic analysis the carbon dioxide (CO2) Average Auction Clearing Price leading for the 200 MW Wind Farms to a hydrogen selling price equal to 191.2 €/MWh against 201 €/MWh of the 200 MW Photovoltaic Farm.
Design of Hydrogen Production Systems Powered by Solar and Wind Energy: An Insight into the Optimal Size Ratios
Jun 2024
Publication
Green hydrogen is expected to play a crucial role in the future energy landscape particularly in the pursuit of deep decarbonisation strategies within hard-to-abate sectors such as the chemical and steel industries and heavy-duty transport. However competitive production costs are vital to unlock the full potential of green hydrogen. In the case of green hydrogen produced via water electrolysis powered by fluctuating renewable energy sources the design of the plant plays a pivotal role in achieving market-competitive production costs. The present work investigates the optimal design of power-to-hydrogen systems powered by renewable sources (solar and wind energy). A detailed model of a power-to-hydrogen system is developed: an energy simulation framework coupled with an economic assessment provides the hydrogen production cost as a function of the component sizes. By spanning a wide range of size ratios namely the ratio between the size of the renewable generator and the size of the electrolyser the cost-optimal design point (minimum hydrogen production cost) is identified. This investigation is carried out for three plant configurations: solar-only wind-only and hybrid. The objective is to extend beyond the analysis of a specific case study and provide broadly applicable considerations for the optimal design of green hydrogen production systems. In particular the rationale behind the cost-optimal size ratio is unveiled and discussed through energy (utilisation factors) and economic (hydrogen production cost) indicators. A sensitivity analysis on investment costs for the power-to-hydrogen technologies is also conducted to explore various technological learning paths from today to 2050. The optimal size ratio is found to be a trade-off between the utilisation factors of the electrolyser and the renewable generator which exhibit opposite trends. Moreover the costs of the power-to-hydrogen technologies are a key factor in determining the optimal size ratio: depending on these costs the optimal solution tends to improve one of the two utilization factors at the expense of the other. Finally the optimal size ratio is foreseen to decrease in the upcoming years primarily due to the reduction in the investment cost of the electrolyser.
Modelling Large-scale Hydrogen Uptake in the Mexican Refinery and Power Sectors
Sep 2023
Publication
Due to the emissions reduction commitments that Mexico compromised in the Paris Agreement several clean fuel and renewable energy technologies need to penetrate the market to accomplish the environmental goals. Therefore there is a need to develop achievable and realistic policies for such technologies to ease the decision-making on national energy strategies. Several countries are starting to develop large-scale green hydrogen production projects to reduce the carbon footprint of the multiple sectors within the country. The conversion sectors namely power and refinery are fundamental sectors to decarbonise due to their energy supply role. Nowadays the highest energy consumables of the country are hydrocarbons (more than 90%) causing a particular challenge for deep decarbonisation. The purpose of this study is to use a multi-regional energy system model of Mexico to analyse a decarbonisation scenario in line with the latest National Energy System Development Program. Results show that if the country wants to succeed in reducing 22% of its GHG emissions and 51% of its short-lived climate pollutants emissions green hydrogen could play a role in power generation in regions with higher energy demand growth rates. These results show regarding the power sector that H2 could represent 13.8 GW or 5.1% of the total installed capacity by 2050 while for the refinery sector H2 could reach a capacity of 157 PJ/y which is around 31.8% of the total share and it is mainly driven by the increasing demands of the transport industry and power sectors. Nevertheless as oil would still represent the largest energy commodity CCS technologies would have to be deployed for new and retrofitted refinery facilities.
Gas Turbine Combustion Technologies for Hydrogen Blends
Sep 2023
Publication
The article reviews gas turbine combustion technologies focusing on their current ability to operate with hydrogen enriched natural gas up to 100% H2. The aim is to provide a picture of the most promising fuel-flexible and clean combustion technologies the object of current research and development. The use of hydrogen in the gas turbine power generation sector is initially motivated highlighting both its decarbonisation and electric grid stability objectives; moreover the state-of-the-art of hydrogen-blend gas turbines and their 2024 and 2030 targets are reported in terms of some key performance indicators. Then the changes in combustion characteristics due to the hydrogen enrichment of natural gas blends are briefly described from their enhanced reactivity to their pollutant emissions. Finally gas turbine combustion strategies both already commercially available (mostly based on aerodynamic flame stabilisation self-ignition and staging) or still under development (like the micro-mixing and the exhaust gas recirculation concepts) are described.
Performance Analysis of a Diabatic Compressed Air Energy Storage System Fueled with Green Hydrogen
Oct 2023
Publication
The integration of an increasing share of Renewable Energy Sources (RES) requires the availability of suitable energy storage systems to improve the grid flexibility and Compressed Air Energy Storage (CAES) systems could be a promising option. In this study a CO2 -free Diabatic CAES system is proposed and analyzed. The plant configuration is derived from a down-scaled version of the McIntosh Diabatic CAES plant where the natural gas is replaced with green hydrogen produced on site by a Proton Exchange Membrane electrolyzer powered by a photovoltaic power plant. In this study the components of the hydrogen production system are sized to maximize the self-consumption share of PV energy generation and the effect of the design parameters on the H2 -CAES plant performance are analyzed on a yearly basis. Moreover a comparison between the use of natural gas and hydrogen in terms of energy consumption and CO2 emissions is discussed. The results show that the proposed hydrogen fueled CAES can effectively match the generation profile and the yearly production of the natural gas fueled plant by using all the PV energy production while producing zero CO2 emissions.
Hydrogen Combustion: Features and Barriers to Its Exploitation in the Energy Transition
Oct 2023
Publication
The aim of this article is to review hydrogen combustion applications within the energy transition framework. Hydrogen blends are also included from the well-known hydrogen enriched natural gas (HENG) to the hydrogen and ammonia blends whose chemical kinetics is still not clearly defined. Hydrogen and hydrogen blends combustion characteristics will be firstly summarized in terms of standard properties like the laminar flame speed and the adiabatic flame temperature but also evidencing the critical role of hydrogen preferential diffusion in burning rate enhancement and the drastic reduction in radiative emission with respect to natural gas flames. Then combustion applications in both thermo-electric power generation (based on internal combustion engines i.e. gas turbines and piston engines) and hard-to-abate industry (requiring high-temperature kilns and furnaces) sectors will be considered highlighting the main issues due to hydrogen addition related to safety pollutant emissions and potentially negative effects on industrial products (e.g. glass cement and ceramic).
LCA of a Proton Exchange Membrane Fuel Cell Electric Vehicle Considering Different Power System Architectures
Sep 2023
Publication
Fuel cell electric vehicles are a promising solution for reducing the environmental impacts of the automotive sector; however there are still some key points to address in finding the most efficient and less impactful implementation of this technology. In this work three electrical architectures of fuel cell electric vehicles were modeled and compared in terms of the environmental impacts of their manufacturing and use phases. The three architectures differ in terms of the number and position of the DC/DC converters connecting the battery and the fuel cell to the electric motor. The life cycle assessment methodology was employed to compute and compare the impacts of the three vehicles. A model of the production of the main components of vehicles and fuel cell stacks as well as of the production of hydrogen fuel was constructed and the impacts were calculated using the program SimaPro. Eleven impact categories were considered when adopting the ReCiPe 2016 midpoint method and the EF (adapted) method was exploited for a final comparison. The results highlighted the importance of the converters and their influence on fuel consumption which was identified as the main factor in the comparison of the environmental impacts of the vehicle.
Energy Performance Assessment of a Solar-driven Thermochemical Cycle Device for Green Hydrogen Production
Sep 2023
Publication
This paper presents a novel dynamic simulation model for assessing the energy performance of solar-driven systems employed in green hydrogen production. The system consists of a parabolic dish collector that focuses solar radiation on two cerium-based thermochemical reactors. The model is based on a transient finitedifference method to simulate the thermal behaviour of the system and it integrates a theoretical analysis of materials and operating principles. Different empirical data were considered for experimentally validating it: a good agreement between experimental and simulated results was obtained for the temperatures calculated inside the thermochemical reactor (R2 = 0.99 MAPE = 6.3%) and the hourly flow rates of hydrogen oxygen and carbon monoxide (R2 = 0.96 MAPE = 10%) inside the thermochemical reactor. The model was implemented in a MatLab tool for the system dynamic analysis under different boundary conditions. Subsequently to explore the capability of this approach the developed tool was used for analysing the examined device operating in twelve different weather zones. The obtained results comprise heat maps of specific crucial instants and hourly dynamic trends showing redox reaction cycles occurring into the thermochemical reactors. The yearly hydrogen production ranges from 1.19 m3 /y to 1.64 m3 /y according to the hourly incident solar radiations outdoor air temperatures and wind speeds. New graphic tools for rapid feasibility studies are presented. The developed tools and the obtained results can be useful to the basic design of this technology and for the multi-objective optimization of its layout and main design/operating parameters.
A Holistic Framework for the Optimal Design and Operation of Electricity, Heating, Cooling and Hydrogen Technologies in Buildings
Jun 2024
Publication
In this work the Design and Operation of Integrated Technologies (DO-IT) framework is developed a comprehensive tool to support short- and long-term technology investment and operation decisions for integrated energy generation conversion and storage technologies in buildings. The novelty of this framework lies in two key aspects: firstly it integrates essential open-source modelling tools covering energy end uses in buildings technology performance and cost and energy system design optimisation into a unified and easily-reproducible framework. Secondly it introduces a novel optimisation tool with a concise and generic mathematical formulation capable of modelling multi-energy vector systems capturing interdependencies between different energy vectors and technologies. The model formulation which captures both short- and long-term energy storage facilitates the identification of smart design and operation strategies with low computational cost. Different building energy demand and price scenarios are investigated and the economic and energy benefits of using a holistic multi-energy-vector approach are quantified. Technology combinations under consideration include: (i) a photovoltaic-electric heat pump-battery system (ii) a photovoltaic-electric heat pump-battery-hot water cylinder system (iii) a photovoltaic-electrolyser‑hydrogen storage-fuel cell system and (iv) a system with all above technology options. Using a university building as a case study it is shown that the smart integration of electricity heating cooling and hydrogen generation and storage technologies results in a total system cost which is >25% lower than the scenario of only importing grid electricity and using a fuel oil boiler. The battery mitigates intra-day fluctuations in electricity demand and the hot-water cylinder allows for efficiently managing heat demand with a small heat pump. In order to avoid PV curtailment excess PV-generated electricity can also be stored in the form of green hydrogen providing a long-term energy storage solution spanning days weeks or even seasons. Results are useful for end-users investment decision makers and energy policy makers when selecting building-integrated low-carbon technologies and relevant policies.
Dynamic Simulation and Thermoeconomic Analysis of a Power to Gas System
Sep 2023
Publication
Power to gas technology is an innovative solution to promote the use of renewable energy technologies also including e-fuels. This work presents a techno-economic analysis of a novel concept of a renewable power to gas plant. A 2.4 MW solid oxide electrolyzer fed by a 3.1 MW photovoltaic field is coupled with a biomethane production unit to produce synthetic methane by means of a 2.4 MW methanation unit. The hydrogen produced by the electrolyzer is used for the methanation reaction aiming at producing natural gas at net zero carbon emissions. The CO2 is obtained as a byproduct of the membrane separation in a biogas upgrading unit. The methanation unit and the electrolyzer models are developed in MatLab and integrated in TRNSYS to perform a dynamic simulation of all the components and the system as a whole. Dynamic simulation results show a 42% increase in the production of natural gas from renewable energy sources. The thermoeconomic analysis shows a remarkable primary energy saving index of 176% and a total amount of 896 tons of CO2 equivalent emissions saved. As expected the critical point is the economic feasibility since the simple payback is 9 years in case local incentives and subsidies are considered. The parametric analysis on the photovoltaic capacity shows that the simple payback dramatically depends on such design parameter varying from 6 years in the best case scenario to 92 years in the worst case scenario.
Liquefied Hydrogen Value Chain: A Detailed Techno-economic Evaluation for its Application in the Industrial and Mobility Sectors
Oct 2023
Publication
Green hydrogen can be efficiently produced in regions rich in renewable sources far from the European largeproduction sites and delivered to the continent for utilization in the industrial and mobility sectors. In this work the transportation of hydrogen from North Africa to North Italy in its liquefied form is considered. A technoeconomic assessment is performed on its value chain which includes liquefaction storage maritime transport distribution regasification and compression. The calculated transport cost for the industrial application (delivery to a hydrogen valley) ranges from 6.14 to 9.16 €/kg while for the mobility application (delivery to refueling stations) the range is 10.96–17.71 €/kg. In the latter case the most cost-effective configuration involves the distribution of liquefied hydrogen and regasification at the refueling stations. The liquefaction process is the cost driver of the value chain in all the investigated cases suggesting the importance of its optimization to minimize the overall transport cost.
Preliminary Design of a Fuel Cell/Battery Hybrid Powertrain for a Heavy-duty Yard Truck for Port Logistics
Jun 2021
Publication
The maritime transport and the port-logistic industry are key drivers of economic growth although they represent major contributors to climate change. In particular maritime port facilities are typically located near cities or residential areas thus having a significant direct environmental impact in terms of air and water quality as well as noise. The majority of the pollutant emissions in ports comes from cargo ships and from all the related ports activities carried out by road vehicles. Therefore a progressive reduction of the use of fossil fuels as a primary energy source for these vehicles and the promotion of cleaner powertrain alternatives is in order. The present study deals with the design of a new propulsion system for a heavy-duty vehicle for port applications. Specifically this work aims at laying the foundations for the development of a benchmark industrial cargo–handling hydrogen-fueled vehicle to be used in real port operations. To this purpose an on-field measurement campaign has been conducted to analyze the duty cycle of a commercial Diesel-engine yard truck currently used for terminal ports operations. The vehicle dynamics has been numerically modeled and validated against the acquired data and the energy and power requirements for a plug-in fuel cell/battery hybrid powertrain replacing the Diesel powertrain on the same vehicle have been evaluated. Finally a preliminary design of the new powertrain and a rule-based energy management strategy have been proposed and the electric energy and hydrogen consumptions required to achieve the target driving range for roll-on and roll-off operations have been estimated. The results are promising showing that the hybrid electric vehicle is capable of achieving excellent energy performances by means of an efficient use of the fuel cell. An overall amount of roughly 12 kg of hydrogen is estimated to be required to accomplish the most demanding port operation and meet the target of 6 h of continuous operation. Also the vehicle powertrain ensures an adequate all-electric range which is between approximately 1 and 2 h depending on the specific port operation. Potentially the hydrogen-fueled yard truck is expected to lead to several benefits such as local zero emissions powertrain noise elimination reduction of the vehicle maintenance costs improving of the energy management and increasing of operational efficiency.
No more items...