Japan
Determining the Spanish Public’s Intention to Adopt Hydrogen Fuel-Cell Vehicles
Aug 2025
Publication
Understanding what people think about hydrogen energy and how this influences their acceptance of the associated technology is a critical area of research. The public’s willingness to adopt practical applications of hydrogen energy such as hydrogen fuel-cell vehicles (HFCVs) is a key factor in their deployment. To analyse the direct and indirect effects of key attitudinal variables that could influence the intention to use HFCVs in Spain an online questionnaire was administered to a representative sample of the Spanish population (N = 1000). A path analysis Structural Equation Model (SEM) was applied to determine the effect of different attitudinal variables. A high intention to adopt HFCVs in Spain was found (3.8 out of 5) assuming their wider availability in the future. The path analysis results indicated that general acceptance of hydrogen technology and perception of its benefits had the greatest effect on the public’s intention to adopt HFCVs. Regarding indirect effects the role of trust in hydrogen technology was notable having significant mediating effects not only through general acceptance of hydrogen energy and local acceptance of hydrogen refuelling stations (HRS) but also through positive and negative emotions and benefits perception. The findings will assist in focusing the future hydrogen communication strategies of both the government and the private (business) sector.
Analysis of Hydrogen Value Chain Events: Implications for Hydrogen Refueling Stations’ Safety
Apr 2024
Publication
Renewable hydrogen is emerging as the key to a sustainable energy transition with multiple applications and uses. In the field of transport in addition to fuel cell vehicles it is necessary to develop an extensive network of hydrogen refueling stations (hereafter HRSs). The characteristics and properties of hydrogen make ensuring the safe operation of these facilities a crucial element for their successful deployment and implementation. This paper shows the outcomes of an analysis of hydrogen incidents and accidents considering their potential application to HRSs. For this purpose the HIAD 2.0 was reviewed and a total of 224 events that could be repeated in any of the major industrial processes related to hydrogen refueling stations were analyzed. This analysis was carried out using a mixed methodology of quantitative and qualitative techniques considering the following hydrogen value chain: production storage delivery and industrial use. The results provide general information segmented by event frequency damage classes and failure typology. The analysis shows the main processes of the value chain allow the identification of key aspects for the safety management of refueling facilities.
Advancing Renewable Energy: Strategic Modeling and Optimization of Flywheel and Hydrogen-based Energy System
Sep 2024
Publication
This study introduces a hybrid energy storage system that combines advanced flywheel technology with hydrogen fuel cells and electrolyzers to address the variability inherent in renewable energy sources like solar and wind. Flywheels provide quick energy dispatch to meet peak demand while hydrogen fuel cells offer sustained power over extended periods. The research explores the strategic integration of these technologies within a hybrid photovoltaic (PV)-flywheel‑hydrogen framework aiming to stabilize the power supply. To evaluate the impact of flywheel integration on system sizing and load fluctuations simulations were conducted both before and after the flywheel integration. The inclusion of the flywheel resulted in a more balanced energy production and consumption profile across different seasons notably reducing the required fuel cell capacity from 100 kW to 30 kW. Additionally the integration significantly enhanced system stability enabling the fuel cell and electrolyzer to operate at consistent power during load fluctuations. The system achieved efficiencies of 71.42 % for the PEM electrolyzer and 62.14 % for the PEM fuel cell. However the introduction of the flywheel requires a higher capacity of PV modules and a larger electrolyzer. The overall flywheel's efficiency was impacted by parasitic energy losses resulting in an overall efficiency of 46.41 %. The minimum efficiency observed across various scenarios of the model studied was 3.14 % highlighting the importance of considering these losses in the overall system design. Despite these challenges the hybrid model demonstrated a substantial improvement in the reliability and stability of renewable energy systems effectively bridging short-term and long-term energy storage solutions.
High-pressure Gaseous Hydrogen Permeation Test Method - Property of Polymeric Materials for High-pressure Hydrogen Devices
Aug 2020
Publication
Polymeric materials are widely used in hydrogen energy system such as FCEV and hydrogen refueling stations under high-pressure condition. The permeation property (coefficients of permeation diffusion and solubility) of polymers under high-pressure hydrogen condition should be discussed as parameters to develop those devices. Also the property should be determined to understand influence of the compression by the pressure on polymer materials. A device which can measure gas permeation property of polymer materials accurately in equilibrium state under high-pressure environment is developed and the reliability of the measurements is ensured. High-pressure hydrogen gas permeability characteristics up to 100 MPa are measured for high-density polyethylene. An advantage of the method is discussed comparing with the non-equilibrium state method focusing on the hydrostatic pressure effect. Deterioration of hydrogen permeability is observed along with the decrease of diffusion coefficient which is supposedly affected by hydrostatic compression effect with the increase of environment pressure.
The Current Status of Hydrogen Energy: An Overview
Sep 2023
Publication
Hydrogen is the most environmentally friendly and cleanest fuel that has the potential to supply most of the world's energy in the future replacing the present fossil fuel-based energy infrastructure. Hydrogen is expected to solve the problem of energy shortages in the near future especially in complex geographical areas (hills arid plateaus etc.) and harsh climates (desert ice etc.). Thus in this report we present a current status of achievable hydrogen fuel based on various scopes including production methods storage and transportation techniques the global market and the future outlook. Its objectives include analyzing the effectiveness of various hydrogen generation processes and their effects on the economy society and environment. These techniques are contrasted in terms of their effects on the environment manufacturing costs energy use and energy efficiency. In addition hydrogen energy market trends over the next decade are also discussed. According to numerous encouraging recent advancements in the field this review offers an overview of hydrogen as the ideal renewable energy for the future society its production methods the most recent storage technologies and transportation strategies which suggest a potential breakthrough towards a hydrogen economy. All these changes show that this is really a profound revolution in the development process of human society and has been assessed as having the same significance as the previous industrial revolution.
The Effect of Carbon Taxonomy on Renewable Hydrogen Production: A Techno-economic and Environmental Assessment
Dec 2024
Publication
From navigating the rainbow of colours to the lack of consensus in establishing a common taxonomy the labelling and definition of green or renewable hydrogen presents a growing challenge. In this context carbon taxonomy is understood through five critical aspects: carbon intensity temporal and geographical correlation additionality of renewable energy generation and different system boundaries in Life Cycle Assessment (LCA). This study examines the effect of carbon taxonomy on the design and operation of Power-to-Gas (PtG) systems for renewable hydrogen production including the electricity supply portfolio via Power Purchase Agreements (PPA) and grid-connected electrolysis. To this end an optimisation model combining energy system modelling and LCA is developed and then applied to a case study in the Japanese context. The importance of the PPA portfolio in securing cheap and low-carbon electricity to produce hydrogen is addressed. To support this evaluation process an eco-efficiency metric is introduced and proved to be a comprehensive tool for evaluating renewable hydrogen production. Regarding carbon taxonomies the findings emphasize additionality as the key determinant factor followed by temporal correlation and the definition of carbon intensity thresholds. The application of a cradle-togate LCA boundary influenced the cabron intensity accounting playing an unexpected role on the design and optimal PtG dispatch strategy.
Economic and Environmental Analyses of an Integrated Power and Hydrogen Production Systems Based on Solar Thermal Energy
Aug 2024
Publication
This study introduces a novel hybrid solar–biomass cogeneration power plant that efficiently produces heat electricity carbon dioxide and hydrogen using concentrated solar power and syngas from cotton stalk biomass. Detailed exergy-based thermodynamic economic and environmental analyses demonstrate that the optimized system achieves an exergy efficiency of 48.67% and an exergoeconomic factor of 80.65% and produces 51.5 MW of electricity 23.3 MW of heat and 8334.4 kg/h of hydrogen from 87156.4 kg/h of biomass. The study explores four scenarios for green hydrogen production pathways including chemical looping reforming and supercritical water gasification highlighting significant improvements in levelized costs and the environmental impact compared with other solar-based hybrid systems. Systems 2 and 3 exhibit superior performance with levelized costs of electricity (LCOE) of 49.2 USD/MWh and 55.4 USD/MWh and levelized costs of hydrogen (LCOH) of between 10.7 and 19.5 USD/MWh. The exergoenvironmental impact factor ranges from 66.2% to 73.9% with an environmental impact rate of 5.4–7.1 Pts/MWh. Despite high irreversibility challenges the integration of solar energy significantly enhances the system’s exergoeconomic and exergoenvironmental performance making it a promising alternative as fossil fuel reserves decline. To improve competitiveness addressing process efficiency and cost reduction in solar concentrators and receivers is crucial.
Economic Performance of Combined Solid Oxide Fuel Cell System with Carbon Capture and Storage with Methanolation and Methanation by Green Hydrogen
Feb 2025
Publication
In addition to the promotion of pumped storage and electricity storage batteries the minimum use of inexpensive thermal power generation for the regulation of power in Japan and other countries is being considered as a supply-demand stabilization device with the expected widespread introduction of renewable energy by 2050. Therefore this study analyzed the economics related to the introduction of solid oxide fuel cell combined cycle using liquefied natural gas as a regulating power. The commercialization of recovered CO2 has been investigated for reducing the overall system operating costs. This study investigated a combined solid oxide fuel cell CO2 utilization system that employed green hydrogen methanolation and methanation to facilitate the use of the CO2 captured by the system. CO2 was separated from the exhaust gas of the system captured stored and used through methanation and methanolation. Consequently the synthesized methane was used for solid oxide fuel cell power generation and the synthesized methanol was sold. The discounted cash flow method was employed to evaluate the economic performance of the proposed system. At a unit price of 0.7–0.9 USD/kWh for electricity sold rated outputs of 1250 and 390 MW for solid oxide fuel cell combined cycle and photovoltaics respectively carbon capture and storage equipment cost of 800 USD/kWh and discount rate of 0.3 % the simple integrated payback period was obtained as 9 years whereas the dynamic payback period was 11–30 years. Consequently the economic feasibility of the proposed system was demonstrated.
Integrated Home Energy Management with Hybrid Backup Storage and Vehicle-to-Home Systems for Enhanced Resilience, Efficiency, and Energy Independence in Green Buildings
Sep 2024
Publication
This study presents an innovative home energy management system (HEMS) that incorporates PV WTs and hybrid backup storage systems including a hydrogen storage system (HSS) a battery energy storage system (BESS) and electric vehicles (EVs) with vehicle-to-home (V2H) technology. The research conducted in Liaoning Province China evaluates the performance of the HEMS under various demand response (DR) scenarios aiming to enhance resilience efficiency and energy independence in green buildings. Four DR scenarios were analyzed: No DR 20% DR 30% DR and 40% DR. The findings indicate that implementing DR programs significantly reduces peak load and operating costs. The 40% DR scenario achieved the lowest cumulative operating cost of $749.09 reflecting a 2.34% reduction compared with the $767.07 cost in the No DR scenario. The integration of backup systems particularly batteries and fuel cells (FCs) effectively managed energy supply ensuring continuous power availability. The system maintained a low loss of power supply probability (LPSP) indicating high reliability. Advanced optimization techniques particularly the reptile search algorithm (RSA) are crucial in enhancing system performance and efficiency. These results underscore the potential of hybrid backup storage systems with V2H technology to enhance energy independence and sustainability in residential energy management.
Hydrogen Refueling Method for Heavy-duty FCV with Pressure Loss Compensation
Apr 2024
Publication
Current hydrogen stations are using a constant dispenser pressure ramp rate method. When a flow rate increases for heavy duty vehicle a large pressure loss occurs and it slows down refueling. This study developed a new method (cTPR method) that has the constant pressure ramp rate in the tank by compensating for the tube pressure loss without any feedback from the vehicle. A refueling simulation confirmed that a refueling was shortened − 49s with a lower ending gas temperature. Testing confirmed that the cTPR method can be realized simply by changing the control without any hardware modification.
CO2 Effect on the Fatigue Crack Growth of X80 Pipeline Steel in Hydrogen-Enriched Natural Gas: Experiment vs Density Functional Theory Calculation
Sep 2023
Publication
The influence of hydrogen-enriched natural gas (HENG) and CO2 on the mechanical property of X80 pipeline steel were investigated via fatigue crack growth rate (FCGR) tests and density functional theory (DFT) calculations. The results show that the FCGR in H2 was slightly faster than that in HENG while it was slower than that in the N2/CO2/H2 mixtures. The enhanced FCGR by CO2 further increased with the increasing CO2 content. DFT calculation results show that the adsorbed CO2 on the iron surface significantly increased the migration rate of H atoms from surface to subsurface. This promotes the entry of hydrogen into the steel.
Dual Fuel-based Multi-Energy System for Australian Renewable Energy Zones at Country Scale
Jul 2025
Publication
This paper aims to optimize dual-fuel facilitated off-/on-grid multi-energy systems (MESs) for different renewable energy zones (REZs) in Australia. The main objective is to develop a novel MES with the main feature of green hydrogen production and blended natural gas utilization for remote households. The proposed optimal system produces green hydrogen of 5343 kg/yr via proton exchange membrane (PEM) electrolyzer and blends it with natural gas. It involves 20 % hydrogen and 80 % natural gas in the overall volume of the blending process. This study contributes by performing optimal sizing of the components economic-energy-environmental and performance analyses to examine the most feasible solution for each REZ. The results indicate that the optimal system in North Queensland REZ has the lowest levelized cost of energy (LCE) of 1.28 A$/kWh and 0.1003 A $/kWh and the net present cost (NPC) of A$0.311 million and A$0.219 million for off-grid and on-grid configurations. The optimal on-grid system has 95.27 % less carbon emissions than the natural gas-fueled combustion energy system.
Life Cycle Costing Approaches of Fuel Cell and Hydrogen Systems: A Literature Review
Apr 2023
Publication
Hydrogen is a versatile energy carrier which can be produced from variety of feedstocks stored and transported in various forms for multi-functional end-uses in transportation energy and manufacturing sectors. Several regional national and supra-national climate policy frameworks emphasize the need value and importance of Fuel cell and Hydrogen (FCH) technologies for deep and sector-wide decarbonization. Despite these multi-faceted advantages familiar and proven FCH technologies such as alkaline electrolysis and proton-exchange membrane fuel cell (PEMFC) often face economic technical and societal barriers to mass-market adoption. There is no single unified standardized and globally harmonized normative definition of costs. Nevertheless the discussion and debates surrounding plausible candidates and/or constituents integral for assessing the economics and value proposition of status-quo as well as developmental FCH technologies are steadily increasing—Life Cycle Costing (LCC) being one of them if not the most important outcome of such exercises.<br/>To that end this review article seeks to improve our collective understanding of LCC of FCH technologies by scrutinizing close to a few hundred publications drawn from representative databases—SCOPUS and Web of Science encompassing several tens of technologies for production and select transportation storage and end-user utilization cases. This comprehensive review forms part of and serves as the basis for the Clean Hydrogen Partnership funded SH2E project whose ultimate goal is the methodical development a formal set of principles and guardrails for evaluating the economic environmental and social impacts of FCH technologies. Additionally the SH2E projects will also facilitate the proper comparison of different FCH technologies whilst reconciling range of technologies methodologies modelling assumptions and parameterization found in existing literature.
Policy Design for Diffusing Hydrogen Economy and Its Impact on the Japanese Economy for Carbon Neutrality by 2050: Analysis Using the E3ME-FTT Model
Nov 2023
Publication
To achieve carbon neutrality in Japan by 2050 renewable energy needs to be used as the main energy source. Based on the constraints of various renewable energies the importance of hydrogen cannot be ignored. This study aimed to investigate the diffusion of hydrogen demand technologies in various sectors and used projections and assumptions to investigate the hydrogen supply side. By performing simulations with the E3ME-FTT model and comparing various policy scenarios with the reference scenario the economic and environmental impacts of the policy scenarios for hydrogen diffusion were analyzed. Moreover the impact of realizing carbon neutrality by 2050 on the Japanese economy was evaluated. Our results revealed that large-scale decarbonization via hydrogen diffusion is possible (90% decrease of CO2 emissions in 2050 compared to the reference) without the loss of economic activity. Additionally investments in new hydrogen-based and other low-carbon technologies in the power sector freight road transport and iron and steel industry can improve the gross domestic product (1.6% increase in 2050 compared to the reference) as they invoke economic activity and require additional employment (0.6% increase in 2050 compared to the reference). Most of the employment gains are related to decarbonizing the power sector and scaling up the hydrogen supply sector while a lot of job losses can be expected in the mining and fossil fuel industries.
Transition Analysis of Budgetary Allocation for Projects on Hydrogen-Related Technologies in Japan
Oct 2020
Publication
Hydrogen technologies are promising candidates of new energy technologies for electric power load smoothing. However regardless of long-term public investment hydrogen economy has not been realized. In Japan the National Research and Development Institute of New Energy and Industrial Technology Development Organization (NEDO) a public research-funding agency has invested more than 200 billion yen in the technical development of hydrogen-related technologies. However hydrogen technologies such as fuel cell vehicles (FCVs) have not been disseminated yet. Continuous and strategic research and development (R&D) are needed but there is a lack of expertise in this field. In this study the transition of the budgetary allocations by NEDO were analyzed by classifying NEDO projects along the hydrogen supply chain and research stage. We found a different R&D focus in different periods. From 2004 to 2007 empirical research on fuel cells increased with the majority of research focusing on standardization. From 2008 to 2011 investment in basic research of fuel cells increased again the research for verification of fuel cells continued and no allocation for research on hydrogen production was confirmed. Thereafter the investment trend did not change until around 2013 when practical application of household fuel cells (ENE-FARM) started selling in 2009 in terms of hydrogen supply chain. Hydrogen economy requires a different hydrogen supply infrastructure that is an existing infrastructure of city gas for ENE-FARM and a dedicated infrastructure for FCVs (e.g. hydrogen stations). We discussed the possibility that structural inertia could prevent the transition to investing more in hydrogen infrastructure from hydrogen utilization technology. This work has significant implications for designing national research projects to realize hydrogen economy.
Impact of Hydrogen Mixture on Fuel Consumption and Exhaust Gas Emissions in a Truck with Direct‑Injection Diesel Engine
May 2023
Publication
Hydrogen addition affects the composition of exhaust gases in vehicles. However the effects of hydrogen addition to compression ignition engines in running vehicles have not been evaluated. Hydrogen‑mixed air was introduced into the air intake of a truck equipped with a direct‑ injection diesel engine and running on a chassis dynamometer to investigate the effect of hydrogen addition on fuel consumption and exhaust gas components. The reduction in diesel consumption and the increase in hydrogen energy share (HES) showed almost linear dependence where the percentage decrease in diesel consumption is approximately 0.6 × HES. The percentage reduction of CO2 showed a one‑to‑one relationship to the reduction in diesel consumption. The reduction in emissions of CO PM and hydrocarbons (except for ethylene) had one to one or a larger correlation with the reduction of diesel consumption. On the other hand it was observed that NOx emissions increased and the percentage increase of NOx was 1.5~2.0 times that of HES. The requirement for total energy supply was more when hydrogen was added than for diesel alone. In the actual running mode only 50% of the energy of added hydrogen was used to power the truck. As no adjustments were made to the engine in this experiment a possible disadvantage that could be improved by adjusting the combustion conditions.
Hydrogen Production by Water Electrolysis Technologies: A Review
Sep 2023
Publication
Hydrogen as an energy source has been identified as an optimal pathway for mitigating climate change by combining renewable electricity with water electrolysis systems. Proton exchange membrane (PEM) technology has received a substantial amount of attention because of its ability to efficiently produce high-purity hydrogen while minimising challenges associated with handling and maintenance. Another hydrogen generation technology alkaline water electrolysis (AWE) has been widely used in commercial hydrogen production applications. Anion exchange membrane (AEM) technology can produce hydrogen at relatively low costs because the noble metal catalysts used in PEM and AWE systems are replaced with conventional low-cost electrocatalysts. Solid oxide electrolyzer cell (SOEC) technology is another electrolysis technology for producing hydrogen at relatively high conversion efficiencies low cost and with low associated emissions. However the operating temperatures of SOECs are high which necessitates long startup times. This review addresses the current state of technologies capable of using impure water in water electrolysis systems. Commercially available water electrolysis systems were extensively discussed and compared. The technical barriers of hydrogen production by PEM and AEM were also investigated. Furthermore commercial PEM stack electrolyzer performance was evaluated using artificial river water (soft water). An integrated system approach was recommended for meeting the power and pure water demands using reversible seawater by combining renewable electricity water electrolysis and fuel cells. AEM performance was considered to be low requiring further developments to enhance the membrane’s lifetime.
Examining Real-Road Fuel Consumption Performance of Hydrogen-Fueled Series Hybrid Vehicles
Oct 2023
Publication
The use of hydrogen fuel produced from renewable energy sources is an effective way to reduce well-to-wheel CO2 emissions from automobiles. In this study the performance of a hydrogen-powered series hybrid vehicle was compared with that of other powertrains such as gasoline-powered hybrid fuel cell and electric vehicles in a simulation that could estimate CO2 emissions under real-world driving conditions. The average fuel consumption of the hydrogenpowered series hybrid vehicle exceeded that of the gasoline-powered series hybrid vehicle under all conditions and was better than that of the fuel cell vehicle under urban and winding conditions with frequent acceleration and deceleration. The driving range was longer than that of the batterypowered vehicle but approximately 60% of that of the gasoline-powered series hybrid. Regarding the life-cycle assessment of CO2 emissions fuel cell and electric vehicles emitted more CO2 during the manufacturing process. Regarding fuel production CO2 emissions from hydrogen and electric vehicles depend on the energy source. However in the future this problem can be solved by using carbon-free energy sources for fuel production. Therefore hydrogen-powered series hybrid vehicles show a high potential to be environmentally friendly alternative fuel vehicles.
Solar-Driven Hydrogen Production: Recent Advances, Challenges, and Future Perspectives
Feb 2022
Publication
Solar H2 production is considered as a potentially promising way to utilizesolar energy and tackle climate change stemming from the combustion of fossil fuels.Photocatalytic photoelectrochemical photovoltaic−electrochemical solar thermochem-ical photothermal catalytic and photobiological technologies are the most intensivelystudied routes for solar H2 production. In this Focus Review we provide a comprehensivereview of these technologies. After a brief introduction of the principles and mechanisms ofthese technologies the recent achievements in solar H2 production are summarized with aparticular focus on the high solar-to-H 2 (STH) conversion efficiency achieved by eachroute. We then comparatively analyze and evaluate these technologies based on the metricsof STH efficiency durability economic viability and environmental sustainability aimingto assess the commercial feasibility of these solar technologies compared with currentindustrial H 2 production processes. Finally the challenges and prospects of future researchon solar H2 production technologies are presented.
Recent Breakthroughs and Future Horizons in Next-generation HT-PEMs for Hydrogen Fuel Cell
Aug 2025
Publication
Aminul Islam,
Mamun Shahriar,
Tarekul Islam,
Md. Tarekul Islam,
Afsana Papia,
Suman Chandra Mohanta,
M. Azizur R. Khan,
Md Aliur Rahman,
Khadiza Tul Kubra,
Md. Munjur Hasan,
Ariyan Islam Rehan,
Mohammed Sohrab Hossain,
Adiba Islam Rasee,
M.A. Shenashen,
Eti Awual,
Md. Chanmiya Sheikh,
Tetsuya Uchida,
R.M. Waliullah,
Md. Shad Salman,
Md. Nazmul Hasan and
Md. Rabiul Awual
High-temperature proton exchange membranes (HT-PEMs) for fuel cells are considered transformative technologies for efficient energy conversion particularly in hydrogen-based transportation owing to their ability to deliver high power density and operational efficiency in harsh environments. However several critical challenges limit their broader adoption notably the limited durability and high costs associated with core components such as membranes and electrocatalysts under elevated temperature conditions. This review systematically addresses these challenges by examining the role of engineered nanomaterials in overcoming performance and stability limitations. The potential of nanomaterials to improve catalytic activity proton conductivity and thermal stability is discussed in detail emphasizing their impact on the optimization of catalyst layer composition including catalysts binders phosphoric acid electrolytes and additives. Recent advancements in nanostructured assemblies and 3D morphologies are explored to enhance fuel cell efficiency through synergistic interactions of these components. Additionally ongoing issues such as catalyst degradation long-term stability and resistance to high-temperature operation are critically analyzed. This manuscript offers a comprehensive overview of current HT-PEMs research and proposes future material design strategies that could bridge the gap between laboratory prototypes and large-scale industrial applications.
No more items...