Mexico
The Role of Hydrogen in a Decarbonised Future Transport Sector: A Case Study of Mexico
Sep 2023
Publication
In recent years several approaches and pathways have been discussed to decarbonise the transport sector; however any effort to reduce emissions might be complex due to specific socio-economic and technical characteristics of different regions. In Mexico the transport sector is the highest energy consumer representing 38.9% of the national final energy demand with gasoline and diesel representing 90% of the sector´s total fuel consumption. Energy systems models are powerful tools to obtain insights into decarbonisation pathways to understand costs emissions and rate of deployment that could serve for energy policy development. This paper focuses on the modelling of the current Mexican transport system using the MUSE-MX multi-regional model with the aim to project a decarbonisation pathway through two different scenarios. The first approach being business as usual (BAU) which aims to analyse current policies implementation and the second being a goal of net zero carbon emissions by 2050. Under the considered net zero scenario results show potential deployment of hydrogen-based transport technologies especially for subsectors such as lorries (100% H2 by 2050) and freight train (25% H2 by 2050) while cars and buses tend to full electrification by 2050.
Energy Storage: From Fundamental Principles to Industrial Applications
Jun 2025
Publication
The increasing global energy demand and the transition toward sustainable energy systems have highlighted the importance of energy storage technologies by ensuring efficiency reliability and decarbonization. This study reviews chemical and thermal energy storage technologies focusing on how they integrate with renewable energy sources industrial applications and emerging challenges. Chemical Energy Storage systems including hydrogen storage and power-to-fuel strategies enable long-term energy retention and efficient use while thermal energy storage technologies facilitate waste heat recovery and grid stability. Key contributions to this work are the exploration of emerging technologies challenges in large-scale implementation and the role of artificial intelligence in optimizing Energy Storage Systems through predictive analytics real-time monitoring and advanced control strategies. This study also addresses regulatory and economic barriers that hinder widespread adoption emphasizing the need for policy incentives and interdisciplinary collaboration. The findings suggest that energy storage will be a fundamental pillar of the sustainable energy transition. Future research should focus on improving material stability enhancing operational efficiency and integrating intelligent management systems to maximize the benefits of these technologies for a resilient and low-carbon energy infrastructure.
Effects of the Size and Cost Reduction on a Discounted Payback Period and Levelised Cost of Energy of a Zero-export Photovoltaic System with Green Hydrogen Storage
May 2023
Publication
Zero-export photovoltaic systems are an option to transition to Smart Grids. They decarbonize the sector without affecting third parties. This paper proposes the analysis of a zero-export PVS with a green hydrogen generation and storage system. This configuration is feasible to apply by any selfgeneration entity; it allows the user to increase their resilience and independence from the electrical network. The technical issue is simplified because the grid supplies no power. The main challenge is finding an economic balance between the savings in electricity billing proportional to the local electricity rate and the complete system’s investment operation and maintenance expenses. This manuscript presents the effects of the power sizing on the efficacy of economic savings in billing (ηSaving ) and the effects of the cost reduction on the levelized cost of energy (LCOE) and a discounted payback period (DPP) based on net present value. In addition this study established an analytical relationship between LCOE and DPP. The designed methodology pro poses to size and selects systems to use and store green hydrogen from the zero-export photo voltaic system. The input data in the case study are obtained experimentally from the Autonomous University of the State of Quintana Roo located on Mexico’s southern border. The maximum power of the load is LPmax = 500 kW and the average power is LPmean = 250 kW; the tariff of the electricity network operator has hourly conditions for a medium voltage demand. A suggested semi-empirical equation allows for determining the efficiency of the fuel cell and electrolyzer as a function of the local operating conditions and the nominal power of the com ponents. The analytical strategy the energy balance equations and the identity functions that delimit the operating conditions are detailed to be generalized to other case studies. The results are obtained by a computer code programmed in C++ language. According to our boundary conditions results show no significant savings generated by the installation of the hydrogen system when the zero-export photovoltaic system Power ≤ LPmax and DPP ≤ 20 years is possible only with LCOE ≤ 0.1 $/kWh. Specifically for the Mexico University case study zero-export photovoltaic system cost must be less than 310 $/kW fuel cell cost less than 395 $/kW and electrolyzer cost less than 460 $/kW.
Feasibility Analysis of Green Hydrogen Production from Oceanic Energy
Sep 2023
Publication
Oceanic energy such as offshore wind energy and various marine energy sources holds signifi cant potential for generating green hydrogen through water electrolysis. Offshore-generated hydrogen has the potential to be transported through standard pipelines and stored in diverse forms. This aids in mitigating the variability of renewable energy sources in power generation and consequently holds the capacity to reshape the framework of electrical systems. This research provides a comprehensive review of the existing state of investigation and technological advancement in the domain of offshore wind energy and other marine energy sources for generating green hydrogen. The primary focus is on technical economic and environmental is sues. The technology’s optimal features have been pinpointed to achieve the utmost capacity for hydrogen production providing insights for potential enhancements that can propel research and development efforts forward. The objective of this study is to furnish valuable information to energy companies by pre senting multiple avenues for technological progress. Concurrently it strives to expand its tech nical and economic outlook within the clean fuel energy sector. This analysis delivers insights into the best operating conditions for an offshore wind farm the most suitable electrolyzer for marine environments and the most economical storage medium. The green hydrogen production process from marine systems has been found to be feasible and to possess a reduced ecological footprint compared to grey hydrogen production.
Proton Exchange Membrane Fuel Cells (PEMFCs): Advances and Challenges
Sep 2021
Publication
The study of the electrochemical catalyst conversion of renewable electricity and carbon oxides into chemical fuels attracts a great deal of attention by different researchers. The main role of this process is in mitigating the worldwide energy crisis through a closed technological carbon cycle where chemical fuels such as hydrogen are stored and reconverted to electricity via electrochemical reaction processes in fuel cells. The scientific community focuses its efforts on the development of high-performance polymeric membranes together with nanomaterials with high catalytic activity and stability in order to reduce the platinum group metal applied as a cathode to build stacks of proton exchange membrane fuel cells (PEMFCs) to work at low and moderate temperatures. The design of new conductive membranes and nanoparticles (NPs) whose morphology directly affects their catalytic properties is of utmost importance. Nanoparticle morphologies like cubes octahedrons icosahedrons bipyramids plates and polyhedrons among others are widely studied for catalysis applications. The recent progress around the high catalytic activity has focused on the stabilizing agents and their potential impact on nanomaterial synthesis to induce changes in the morphology of NPs.
The Integration of Thermal Energy Storage Within Metal Hydride Systems: A Comprehensive Review
Dec 2024
Publication
Hydrogen storage technologies are key enablers for the development of low-emission sustainable energy supply chains primarily due to the versatility of hydrogen as a clean energy carrier. Hydrogen can be utilized in both stationary and mobile power applications and as a lowenvironmental-impact energy source for various industrial sectors provided it is produced from renewable resources. However efficient hydrogen storage remains a significant technical challenge. Conventional storage methods such as compressed and liquefied hydrogen suffer from energy losses and limited gravimetric and volumetric energy densities highlighting the need for innovative storage solutions. One promising approach is hydrogen storage in metal hydrides which offers advantages such as high storage capacities and flexibility in the temperature and pressure conditions required for hydrogen uptake and release depending on the chosen material. However these systems necessitate the careful management of the heat generated and absorbed during hydrogen absorption and desorption processes. Thermal energy storage (TES) systems provide a means to enhance the energy efficiency and cost-effectiveness of metal hydride-based storage by effectively coupling thermal management with hydrogen storage processes. This review introduces metal hydride materials for hydrogen storage focusing on their thermophysical thermodynamic and kinetic properties. Additionally it explores TES materials including sensible latent and thermochemical energy storage options with emphasis on those that operate at temperatures compatible with widely studied hydride systems. A detailed analysis of notable metal hydride–TES coupled systems from the literature is provided. Finally the review assesses potential future developments in the field offering guidance for researchers and engineers in advancing innovative and efficient hydrogen energy systems.
Thermochemical Production of Hydrogen from Biomass: Pyrolysis and Gasification
Jan 2024
Publication
Today hydrogen is one of the best options for generating electrical energy for both industrial and residential use. The greatest volume of hydrogen produced today derives from processes that utilize petroleum. Although hydrogen has numerous benefits continuing to produce it by these means is undesirable. This document presents a review of the literature on biohydrogen production based on an analysis of over 15 types of terrestrial and marine biomasses. The fundamental components of different production systems are described with a focus on the thermochemical processes of pyrolysis and gasification which have been identified as two of the most effective practical ways to produce hydrogen from biomass. It also discusses catalysts solid residues and residual water that are used in the thermochemical production of biohydrogen. The article ends with an analysis of hydrogen and its benefits as an energy option with great potential in the short term to participate in the transition from fossil fuels.
Review on Ammonia as a Potential Fuel: From Synthesis to Economics
Feb 2021
Publication
Ammonia a molecule that is gaining more interest as a fueling vector has been considered as a candidate to power transport produce energy and support heating applications for decades. However the particular characteristics of the molecule always made it a chemical with low if any benefit once compared to conventional fossil fuels. Still the current need to decarbonize our economy makes the search of new methods crucial to use chemicals such as ammonia that can be produced and employed without incurring in the emission of carbon oxides. Therefore current efforts in this field are leading scientists industries and governments to seriously invest efforts in the development of holistic solutions capable of making ammonia a viable fuel for the transition toward a clean future. On that basis this review has approached the subject gathering inputs from scientists actively working on the topic. The review starts from the importance of ammonia as an energy vector moving through all of the steps in the production distribution utilization safety legal considerations and economic aspects of the use of such a molecule to support the future energy mix. Fundamentals of combustion and practical cases for the recovery of energy of ammonia are also addressed thus providing a complete view of what potentially could become a vector of crucial importance to the mitigation of carbon emissions. Different from other works this review seeks to provide a holistic perspective of ammonia as a chemical that presents benefits and constraints for storing energy from sustainable sources. State-of-the-art knowledge provided by academics actively engaged with the topic at various fronts also enables a clear vision of the progress in each of the branches of ammonia as an energy carrier. Further the fundamental boundaries of the use of the molecule are expanded to real technical issues for all potential technologies capable of using it for energy purposes legal barriers that will be faced to achieve its deployment safety and environmental considerations that impose a critical aspect for acceptance and wellbeing and economic implications for the use of ammonia across all aspects approached for the production and implementation of this chemical as a fueling source. Herein this work sets the principles research practicalities and future views of a transition toward a future where ammonia will be a major energy player.
Designing Effective Hydrogen Markets: Policy Recommendations from Electricity and Gas Market Reform
Aug 2025
Publication
For low-carbon hydrogen to become a viable decarbonization solution the creation of a robust and effective market is essential. This paper examines the applicability of market reforms from the renewable energy natural gas and liquefied natural gas (LNG) sectors with a focus on pricing mechanisms business models and infrastructure access to facilitate hydrogen market development. Applying the Structure-Conduct-PerformanceRegulation (SCP-R) framework and informed by stakeholder insights we identify critical enablers for advancing the hydrogen market formation. Our analysis highlights the importance of innovative pricing strategies and regulatory measures incentivizing investment and managing risks. Establishing a market reference price for low-carbon hydrogen — akin to benchmarks in the natural gas and LNG sectors—is critical for ensuring transparency predictability and regional adaptability in trade. Additionally customized business models are also needed to mitigate volume risks for producers. Government interventions such as offtake agreements and the development of hydrogen hubs are indispensable for fostering competition and driving decarbonization.
Introducing a New Color of Hydrogen: Light-Blue Hydrogen
May 2025
Publication
A new type of hydrogen produced in situ in petroleum reservoirs is proposed. This technology is based on ex situ catalytic gasification of biomass combining two thermal enhanced oil recovery techniques currently used in industrial fields: cyclic steam stimulation and in situ combustion. This hydrogen named “light-blue hydrogen” is produced in reservoirs like naturally occurring white hydrogen and from fossil fuels like blue hydrogen. The color light blue results from the blending of white and blue. This approach is particularly suitable for mature petroleum reservoirs which are in the final stages of production or no longer producing oil. This manuscript describes the method for producing light-blue hydrogen in situ its commercial application prospects and the challenges for developing and scaling up this technology.
Techno-Economic Analysis of Marine Hybrid Clusters for Use in Chile and Mexico
Oct 2025
Publication
This study assesses the feasibility and profitability of marine hybrid clusters combining wave energy converters (WECs) and offshore wind turbines (OWTs) to power households and marine aquaculture. Researchers analyzed two coastal sites: La Serena Chile with high and consistent wave energy resources and Ensenada Mexico with moderate and more variable wave power. Two WEC technologies Wave Dragon (WD) and Pelamis (PEL) were evaluated alongside lithium-ion battery storage and green hydrogen production for surplus energy storage. Results show that La Serena’s high wave power (26.05 kW/m) requires less hybridization than Ensenada’s (13.88 kW/m). The WD device in La Serena achieved the highest energy production while PEL arrays in Ensenada were more effective. The PEL-OWT cluster proved the most cost-effective in Ensenada whereas the WD-OWT performed better in La Serena. Supplying electricity for seaweed aquaculture particularly in La Serena proves more profitable than for households. Ensenada’s clusters generate more surplus electricity suitable for the electricity market or hydrogen conversion. This study emphasizes the importance of tailoring emerging WEC systems to local conditions optimizing hybridization strategies and integrating consolidated industries such as aquaculture to enhance both economic and environmental benefits.
No more items...