Malta
Using Hydro-Pneumatic Energy Storage for Improving Offshore Wind-Driven Green Hydrogen Production—A Preliminary Feasibility Study in the Central Mediterranean Sea
Aug 2025
Publication
This paper presents a preliminary feasibility study for integrating hydro-pneumatic energy storage (HPES) with off-grid offshore wind turbines and green hydrogen production facilities—a concept termed HydroGenEration (HGE). This study compares the performance of this innovative concept system with an off-grid direct wind-to-hydrogen plant concept without energy storage both under central Mediterranean wind conditions. Numerical simulations were conducted at high temporal resolution capturing 10-min fluctuations of open field measured wind speeds at an equivalent offshore wind turbine (WT) hub height over a full 1-year seasonal cycle. Key findings demonstrate that the HPES system of choice namely the Floating Liquid Piston Accumulator with Sea Water under Compression (FLASC) system significantly reduces Proton Exchange Membrane (PEM) electrolyser (PEMEL) On/Off cycling (with a 66% reduction in On/Off events) while maintaining hydrogen production levels despite the integration of the energy storage system which has a projected round-trip efficiency of 75%. The FLASC-integrated HGE solution also marginally reduces renewable energy curtailment by approximately 0.3% during the 12-month timeframe. Economic analysis reveals that while the FLASC HPES system does introduce an additional capital cost into the energy chain it still yields substantial operational savings exceeding EUR 3 million annually through extended PEM electrolyser lifetime and improved operational efficiency. The Levelized Cost of Hydrogen (LCOH) for the FLASC-integrated HGE system which is estimated to be EUR 18.83/kg proves more economical than a direct wind-to-hydrogen approach with a levelized cost of EUR 21.09/kg of H2 produced. This result was achieved through more efficient utilisation of wind energy interfaced with energy storage as it mitigated the natural intermittency of the wind and increased the lifecycle of the equipment especially that of the PEM electrolysers. Three scenario models were created to project future costs. As electrolyser technologies advance cost reductions would be expected and this was one of the scenarios envisaged for the future. These scenarios reinforce the technical and economic viability of the HGE concept for offshore green hydrogen production particularly in the Mediterranean and in regions having similar moderate wind resources and deeper seas for offshore hybrid sustainable energy systems.
Mitigation of Reverse Power Flows in a Distribution Network by Power-to-Hydrogen Plant
Jul 2025
Publication
The increase in power generation facilities from nonprogrammable renewable sources is posing several challenges for the management of electrical systems due to phenomena such as congestion and reverse power flows. In mitigating these phenomena Power-to-Gas plants can make an important contribution. In this paper a linear optimisation study is presented for the sizing of a Power-to-Hydrogen plant consisting of a PEM electrolyser a hydrogen storage system composed of multiple compressed hydrogen tanks and a fuel cell for the eventual reconversion of hydrogen to electricity. The plant was sized with the objective of minimising reverse power flows in a medium-voltage distribution network characterised by a high presence of photovoltaic systems considering economic aspects such as investment costs and the revenue obtainable from the sale of hydrogen and excess energy generated by the photovoltaic systems. The study also assessed the impact that the electrolysis plant has on the power grid in terms of power losses. The results obtained showed that by installing a 737 kW electrolyser the annual reverse power flows are reduced by 81.61% while also reducing losses in the transformer and feeders supplying the ring network in question by 17.32% and 29.25% respectively on the day with the highest reverse power flows.
No more items...