Skip to content
1900

Using Hydro-Pneumatic Energy Storage for Improving Offshore Wind-Driven Green Hydrogen Production—A Preliminary Feasibility Study in the Central Mediterranean Sea

Abstract

This paper presents a preliminary feasibility study for integrating hydro-pneumatic energy storage (HPES) with off-grid offshore wind turbines and green hydrogen production facilities—a concept termed HydroGenEration (HGE). This study compares the performance of this innovative concept system with an off-grid direct wind-to-hydrogen plant concept without energy storage, both under central Mediterranean wind conditions. Numerical simulations were conducted at high temporal resolution, capturing 10-min fluctuations of open field measured wind speeds at an equivalent offshore wind turbine (WT) hub height over a full 1-year, seasonal cycle. Key findings demonstrate that the HPES system of choice, namely the Floating Liquid Piston Accumulator with Sea Water under Compression (FLASC) system, significantly reduces Proton Exchange Membrane (PEM) electrolyser (PEMEL) On/Off cycling (with a 66% reduction in On/Off events), while maintaining hydrogen production levels, despite the integration of the energy storage system, which has a projected round-trip efficiency of 75%. The FLASC-integrated HGE solution also marginally reduces renewable energy curtailment by approximately 0.3% during the 12-month timeframe. Economic analysis reveals that while the FLASC HPES system does introduce an additional capital cost into the energy chain, it still yields substantial operational savings exceeding EUR 3 million annually through extended PEM electrolyser lifetime and improved operational efficiency. The Levelized Cost of Hydrogen (LCOH) for the FLASC-integrated HGE system, which is estimated to be EUR 18.83/kg, proves more economical than a direct wind-to-hydrogen approach with a levelized cost of EUR 21.09/kg of H2 produced. This result was achieved through more efficient utilisation of wind energy interfaced with energy storage as it mitigated the natural intermittency of the wind and increased the lifecycle of the equipment, especially that of the PEM electrolysers. Three scenario models were created to project future costs. As electrolyser technologies advance, cost reductions would be expected, and this was one of the scenarios envisaged for the future. These scenarios reinforce the technical and economic viability of the HGE concept for offshore green hydrogen production, particularly in the Mediterranean, and in regions having similar moderate wind resources and deeper seas for offshore hybrid sustainable energy systems.

Funding source: The project: “Hydro Pneumatic Energy Storage for Offshore Green Hydrogen Generation—HydroGenEration—Grant Agreement Reference Number: EWA 64/22”, was financed by Malta’s Energy and Water Agency under the National Strategy for Innovation in Energy and Water (2021–2030). The Light Detection and Ranging (LiDAR) system which supplied the high-resolution wind data was purchased through the European Regional Development Fund for the setting up of a Solar Laboratory (ERDF 335), part-financed by the European Union. The project “Wind-driven Offshore Hydrogen Production with Electricity and Flow Stabilization (WIND4H2)” was supported through the Maritime Seed Award (MarSA) 2019; a joint initiative between Transport Malta (formerly Malta Marittima) and the University of Malta, supported by the TAKEOFF Business Incubator, within the Knowledge Transfer Office, and the Centre for Entrepreneurship and Business Incubation (CEBI) at the University of Malta.
Related subjects: Applications & Pathways
Countries: Malta ; Netherlands
Loading

Article metrics loading...

/content/journal7517
2025-08-14
2025-12-05
/content/journal7517
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test