Turkey
Cost and Thermodynamic Analysis of Wind-Hydrogen Production via Multi-energy Systems
Mar 2024
Publication
With rising temperatures extreme weather events and environmental challenges there is a strong push towards decarbonization and an emphasis on renewable energy with wind energy emerging as a key player. The concept of multi-energy systems offers an innovative approach to decarbonization with the potential to produce hydrogen as one of the output streams creating another avenue for clean energy production. Hydrogen has significant potential for decarbonizing multiple sectors across buildings transport and industries. This paper explores the integration of wind energy and hydrogen production particularly in areas where clean energy solutions are crucial such as impoverished villages in Africa. It models three systems: distinct configurations of micro-multi-energy systems that generate electricity space cooling hot water and hydrogen using the thermodynamics and cost approach. System 1 combines a wind turbine a hydrogen-producing electrolyzer and a heat pump for cooling and hot water. System 2 integrates this with a biomass-fired reheat-regenerative power cycle to balance out the intermittency of wind power. System 3 incorporates hydrogen production a solid oxide fuel cell for continuous electricity production an absorption cooling system for refrigeration and a heat exchanger for hot water production. These systems are modeled with Engineering Equation Solver and analyzed based on energy and exergy efficiencies and on economic metrics like levelized cost of electricity (LCOE) cooling (LCOC) refrigeration (LCOR) and hydrogen (LCOH) under steady-state conditions. A sensitivity analysis of various parameters is presented to assess the change in performance. Systems were optimized using a multiobjective method with maximizing exergy efficiency and minimizing total product unit cost used as objective functions. The results show that System 1 achieves 79.78 % energy efficiency and 53.94 % exergy efficiency. System 2 achieves efficiencies of 55.26 % and 27.05 % respectively while System 3 attains 78.73 % and 58.51 % respectively. The levelized costs for micro-multi-energy System 1 are LCOE = 0.04993 $/kWh LCOC = 0.004722 $/kWh and LCOH = 0.03328 $/kWh. For System 2 these values are 0.03653 $/kWh 0.003743 $/kWh and 0.03328 $/kWh. In the case of System 3 they are 0.03736 $/kWh 0.004726 $/kWh and 0.03335 $/kWh and LCOR = 0.03309 $/kWh. The results show that the systems modeled here have competitive performance with existing multi-energy systems powered by other renewables. Integrating these systems will further the sustainable and net zero energy system transition especially in rural communities.
Analysis of Power to Gas Technologies for Energy Intensive Industries in European Union
Jan 2023
Publication
Energy Intensive Industries (EII) are high users of energy and some of these facilities are extremely dependent on Natural Gas for processing heat production. In European countries where Natural Gas is mostly imported from external producers the increase in international Natural Gas prices is making it difficult for some industries to deliver the required financial results. Therefore they are facing complex challenges that could cause their delocalization in regions with lower energy costs. European countries lack on-site Natural Gas resources and the plans to reduce greenhouse gas emissions in the industrial sector make it necessary to find an alternative. Many different processes cannot be electrified and in these cases synthetic methane is one of the solutions and also represents an opportunity to reduce external energy supply dependency. This study analyzes the current development of power-to-gas technological solutions that could be implemented in large industrial consumers to produce Synthetic Methane using Green Hydrogen as a raw source and using Renewable Energy electricity mainly produced with photovoltaic or wind energy. The study also reviews the triple bottom line impact and the current development status and associated costs for each key component of a power-to-gas plant and the requirements to be fulfilled in the coming years to develop a cost-competitive solution available for commercial use.
Hydrogen Generation from a Small-Scale Solar Photovoltaic Thermal (PV/T) Electrolyzer System: Numerical Model and Experimental Verification
Jun 2020
Publication
In this study the electrical electrochemical and thermodynamic performance of a PV/T electrolyzer system was investigated and the experimental results were verified with a numerical model. The annual amounts of electrical and thermal energy from the PV/T electrolyzer system were calculated as 556.8 kWh and 1912 kWh respectively. In addition the hydrogen production performance for the PV/T electrolyzer was compared with that of a PV electrolyzer system. The amount of hydrogen was calculated as 3.96 kg annually for the PV system while this value was calculated as 4.49 kg for the PV/T system. Furthermore the amount of hydrogen production was calculated as 4.59 kg for a 65 ◦C operation temperature. The electrical thermal and total energy efficiencies of the PV/T system which were obtained hourly on a daily basis were calculated and varied between 12–13.8% 36.1–45.2% and 49.1–58.4% respectively. The hourly exergy analyses were also carried out on a daily basis and the results showed that the exergy efficiencies changed between 13.8–14.32%. The change in the electrolysis voltage was investigated by changing the current and temperature in the ranges of 200–1600 mA/cm2 A and 30–65 ◦C respectively. While the current and the water temperature varied in the ranges of 400–2350 mA/cm2 and 28.1–45.8 ◦C respectively energy efficiency and exergy efficiency were in the ranges of 57.85–69.45% and 71.1–79.7% respectively.
A Review on Thermal Coupling of Metal Hydride Storage Tanks with Fuel Cells and Electrolyzers
Dec 2022
Publication
Hydrogen is one of the energy carriers that has started to play a significant role in the clean energy transition. In the hydrogen ecosystem storing hydrogen safely and with high volumetric density plays a key role. In this regard metal hydride storage seems to be superior to compressed gas storage which is the most common method used today. However thermal management is a challenge that needs to be considered. Temperature changes occur during charging and discharging processes due to the reactions between metal metal hydride and hydrogen which affect the inflow or outflow of hydrogen at the desired flow rate. There are different thermal management techniques to handle this challenge in the literature. When the metal hydride storage tanks are used in integrated systems together with a fuel cell and/or an electrolyzer the thermal interactions between these components can be used for this purpose. This study gives a comprehensive review of the heat transfer during the charging and discharging of metal hydride tanks the thermal management system techniques used for metal hydride tanks and the studies on the thermal management of metal hydride tanks with material streams from the fuel cell and/or electrolyzers.
Optimization of a Heavy-Duty Hydrogen-Fueled Internal Combustion Engine Injector for Optimum Performance and Emission Level
Jul 2025
Publication
Hydrogen is a promising zero-carbon fuel for internal combustion engines; however the geometric optimization of injectors for low-pressure direct-injection (LPDI) systems under lean-burn conditions remains underexplored. This study presents a high-fidelity optimization framework that couples a validated computational fluid dynamics (CFD) combustion model with a surrogate-assisted multi-objective genetic algorithm (MOGA). The CFD model was validated using particle image velocimetry (PIV) data from non-reacting flow experiments conducted in an optically accessible research engine developed by Sandia National Laboratories ensuring accurate prediction of in-cylinder flow structures. The optimization focused on two critical geometric parameters: injector hole count and injection angle. Partial indicated mean effective pressure (pIMEP) and in-cylinder NOx emissions were selected as conflicting objectives to balance performance and emissions. Adaptive mesh refinement (AMR) was employed to resolve transient in-cylinder flow and combustion dynamics with high spatial accuracy. Among 22 evaluated configurations including both capped and uncapped designs the injector featuring three holes at a 15.24◦ injection angle outperformed the baseline delivering improved mixture uniformity reduced knock tendency and lower NOx emissions. These results demonstrate the potential of geometrybased optimization for advancing hydrogen-fueled LPDI engines toward cleaner and more efficient combustion strategies.
Porosity and Thickness Effect of Pd–Cu–Si Metallic Glasses on Electrocatalytic Hydrogen Production and Storage
Aug 2021
Publication
This contribution places emphasis on tuning pore architecture and film thickness of mesoporous Pd–Cu–Si thin films sputtered on Si/SiO2 substrates for enhanced electrocatalytic and hydrogen sorption/desorption activity and their comparison with the state-of-the-art thin film electrocatalysts. Small Tafel slope of 43 mV dec–1 for 1250 nm thick coatings with 2 µm diameter pores with 4.2 µm interspacing (H2) electrocatalyst with comparable hydrogen overpotentials to the literature suggests its use for standard fuel cells. The largest hydrogen sorption has been attained for the 250 nm thick electrocatalyst on 5 µm pore diameter and 12 µm interspacing (2189 µC cm–2 per CV cycle) making it possible for rapid storage systems. Moreover the charge transfer resistance described by an equivalent circuit model has an excellent correlation with Tafel slopes. Along with its very low Tafel slope of 42 mV dec–1 10 nm thick H2 pore design electrocatalyst has the highest capacitive response of ∼0.001 S sn cm–2 and is promising to be used as a nano-charger and hydrogen sensor.
Analysis of Strategic Directions in Sustainable Hydrogen Investment Decisions
Jun 2020
Publication
This study seeks to find the appropriate strategies necessary to make sustainable and effective hydrogen energy investments. Within this scope nine different criteria are defined regarding social managerial and financial factors. A hesitant interval-valued intuitionistic fuzzy (IVIF) decision-making trial and evaluation laboratory (DEMATEL) methodology is considered to calculate the degree of importance of the criteria. Additionally impact relation maps are also generated to visualize the causality relationship between the factors. The findings indicate that the technical dimension has the greatest importance in comparison to managerial and financial factors. Furthermore it is also concluded that storage and logistics research and development and technological infrastructure are the most significant factors to be considered when defining hydrogen energy investment strategies. Hence before investing in hydrogen energy necessary actions should be taken to minimize the storage and logistic costs. Among them building the production site close to the usage area will contribute significantly to this purpose. In this way possible losses during the transportation of hydrogen can be minimized. Moreover it is essential to identify the lowest-cost hydrogen storage method by carrying out the necessary research and development activities thereby increasing the sustainability and effectiveness of hydrogen energy investment projects.
Hydrogen and Fuel Cell Demonstrations in Turkey
Nov 2012
Publication
As a non-profit UNIDO project funded 100% by the Turkish Ministry of Energy and Natural Resources International Center for Hydrogen Energy Technologies (ICHET) has been implementing pilot demonstration projects providing applied R&D funding; organizing workshops education and training activities in Turkey and other developing countries to show potential benefits of “hydrogen and fuel cell systems”. It is important to leap-frog developing countries to hydrogen for eliminating detrimental effect of fossil fuels. To achieve its mission ICHET implements pilot demonstration projects in combination with renewable energy systems to encourage local industry to manufacture similar systems and explore market potential for such use. Support is provided to selected industrial partners in Turkey for developing products or for early demonstrations including a fuel cell forklift a fuel cell boat a fuel cell passenger cart with PV integrated roof-top renewable integrated mobile house fuel cell based UPS installations. As more and more systems demonstrated public awareness on applications of hydrogen and fuel cell technologies will increase and viability of such systems will be realized to change public perception.
Exergetic Sustainability Comparison of Turquoise Hydrogen Conversion to Low-carbon Fuels
Nov 2022
Publication
Turquoise hydrogen is produced from methane cracking a cleaner alternative to steam methane reforming. This study looks at two proposed systems based on solar methane cracking for low-carbon fuel production. The systems utilize different pathways to convert the hydrogen into a suitable form for transportation and utilize the carbon solid by-product. A direct carbon fuel cell is integrated to utilize the carbon and capture the CO2 emissions. The CO2 generated is utilized for fuel production using CO2 hydrogenation or co-electrolysis. An advanced exergetic analysis is conducted on these systems using Aspen plus simulations of the process. The exergetic efficiency waste exergy ratio exergy destruction ratio exergy recoverability ratio environmental effect factor and the exergetic sustainability index were determined for each system and the subsystems. Solar methane cracking was found to have an environmental effect factor of 0.08 and an exergetic sustainability index of 12.27.
PEM Fuel Cell Performance with Solar Air Preheating
Feb 2020
Publication
Proton Exchange Membrane Fuel Cells (PEMFC) have proven to be a promising energy conversion technology in various power applications and since it was developed it has been a potential alternative over fossil fuel-based engines and power plants all of which produce harmful by-products. The inlet air coolant and reactants have an important effect on the performance degradation of the PEMFC and certain power outputs. In this work a theoretical model of a PEM fuel cell with solar air heating system for the preheating hydrogen of PEM fuel cell to mitigate the performance degradation when the fuel cell operates in cold environment is proposed and evaluated by using energy analysis. Considering these heating and energy losses of heat generation by hydrogen fuel cells the idea of using transpired solar collectors (TSC) for air preheating to increase the inlet air temperature of the low-temperature fuel cell could be a potential development. The aim of the current article is applying solar air preheating for the hydrogen fuel cells system by applying TSC and analyzing system performance. Results aim to attention fellow scholars as well as industrial engineers in the deployment of solar air heating together with hydrogen fuel cell systems that could be useful for coping with fossil fuel-based power supply systems.
Energy Assessment of an Integrated Hydrogen Production System
Dec 2022
Publication
Hydrogen is believed to be the future energy carrier that will reduce environmental pollution and solve the current energy crisis especially when produced from a renewable energy source. Solar energy is a renewable source that has been commonly utilized in the production process of hydrogen for years because it is inexhaustible clean and free. Generally hydrogen is produced by means of a water splitting process mainly electrolysis which requires energy input provided by harvesting solar energy. The proposed model integrates the solar harvesting system into a conventional Rankine cycle producing electrical and thermal power used in domestic applications and hydrogen by high temperature electrolysis (HTE) using a solid oxide steam electrolyzer (SOSE). The model is divided into three subsystems: the solar collector(s) the steam cycle and an electrolysis subsystem where the performance of each subsystem and their effect on the overall efficiency is evaluated thermodynamically using first and second laws. A parametric study investigating the hydrogen production rate upon varying system operating conditions (e.g. solar flux and area of solar collector) is conducted on both parabolic troughs and heliostat fields as potential solar energy harvesters. Results have shown that heliostat-based systems were able to attain optimum performance with an overall thermal efficiency of 27% and a hydrogen production rate of 0.411 kg/s whereas parabolic trough-based systems attained an overall thermal efficiency of 25.35% and produced 0.332 kg/s of hydrogen.
Active Energy Management Based on Meta-Heuristic Algorithms of Fuel Cell/Battery/Supercapacitor Energy Storage System for Aircraft
Mar 2021
Publication
This paper presents the application of an active energy management strategy to a hybrid system consisting of a proton exchange membrane fuel cell (PEMFC) battery and supercapacitor. The purpose of energy management is to control the battery and supercapacitor states of charge (SOCs) as well as minimizing hydrogen consumption. Energy management should be applied to hybrid systems created in this way to increase efficiency and control working conditions. In this study optimization of an existing model in the literature with different meta-heuristic methods was further examined and results similar to those in the literature were obtained. Ant lion optimizer (ALO) moth-flame optimization (MFO) dragonfly algorithm (DA) sine cosine algorithm (SCA) multi-verse optimizer (MVO) particle swarm optimization (PSO) and whale optimization algorithm (WOA) meta-heuristic algorithms were applied to control the flow of power between sources. The optimization methods were compared in terms of hydrogen consumption and calculation time. Simulation studies were conducted in Matlab/Simulink R2020b (academic license). The contribution of the study is that the optimization methods of ant lion algorithm moth-flame algorithm and sine cosine algorithm were applied to this system for the first time. It was concluded that the most effective method in terms of hydrogen consumption and computational burden was the sine cosine algorithm. In addition the sine cosine algorithm provided better results than similar meta-heuristic algorithms in the literature in terms of hydrogen consumption. At the same time meta-heuristic optimization algorithms and equivalent consumption minimization strategy (ECMS) and classical proportional integral (PI) control strategy were compared as a benchmark study as done in the literature and it was concluded that meta-heuristic algorithms were more effective in terms of hydrogen consumption and computational time.
A Comprehensive Review of the State-of-the-art of Proton Exchange Membrane Water Electrolysis
Jul 2024
Publication
Hydrogen has attracted growing research interest due to its exceptionally high energy per mass content and being a clean energy carrier unlike the widely used hydrocarbon fuels. With the possibility of long-term energy storage and re-electrification hydrogen promises to promote the effective utilization of renewable and sustainable energy resources. Clean hydrogen can be produced through a renewable-powered water electrolysis process. Although alkaline water electrolysis is currently the mature and commercially available electrolysis technology for hydrogen production it has several shortcomings that hinder its integration with intermittent and fluctuating renewable energy sources. The proton exchange membrane water electrolysis (PEMWE) technology has been developed to offer high voltage efficiencies at high current densities. Besides PEMWE cells are characterized by a fast system response to fluctuating renewable power enabling operations at broader partial power load ranges while consistently delivering high-purity hydrogen with low ohmic losses. Recently much effort has been devoted to improving the efficiency performance durability and economy of PEMWE cells. The research activities in this context include investigations of different cell component materials protective coatings and material characterizations as well as the synthesis and analysis of new electrocatalysts for enhanced electrochemical activity and stability with minimized use of noble metals. Further many modeling studies have been reported to analyze cell performance considering cell electrochemistry overvoltage and thermodynamics. Thus it is imperative to review and compile recent research studies covering multiple aspects of PEMWE cells in one literature to present advancements and limitations of this field. This article offers a comprehensive review of the state-of-the-art of PEMWE cells. It compiles recent research on each PEMWE cell component and discusses how the characteristics of these components affect the overall cell performance. In addition the electrochemical activity and stability of various catalyst materials are reviewed. Further the thermodynamics and electrochemistry of electrolytic water splitting are described and inherent cell overvoltage are elucidated. The available literature on PEMWE cell modeling aimed at analyzing the performance of PEMWE cells is compiled. Overall this article provides the advancements in cell components materials electrocatalysts and modeling research for PEMWE to promote the effective utilization of renewable but intermittent and fluctuating energy in the pursuit of a seamless transition to clean energy.
Geothermal Energy Prospect for Decarbonization, EWF Nexus and Energy Poverty Mitigation in East Africa; The Role of Hydrogen Production
Aug 2023
Publication
The affordability and availability of water and energy have a huge impact on food production. Research has shown that there exists a direct and indirect link between power production and clean water generation. Hence the inclusion/importance given to the energy-water-food (EWF) nexus in the United Nations’ sustainable development goals. Acknowledging the importance of decarbonization to the global future there exists a gap in literature on the development of models that can enhance the EWF nexus reduce energy poverty and achieve 100% renewable energy in the electricity sector. Therefore the technical and economic prospect of geothermal energy for bridging the aforementioned gaps in existing works of literature is presented in this study. The energy poverty/wealthy status of a country has been confirmed to have a significant impact on economic development as economic development is largely reflected in the food-water availability. Ditto this study is focused on the interconnectivity of the EWF nexus while incorporating global decarbonization targets. Geothermal energy is of the utmost significance in East Africa due to its abundant potential and distinctive geological features. Located in the Great Rift Valley the region has an abundance of geothermal reservoirs making it an ideal location for geothermal power generation. This study is novel as a comprehensive assessment framework for energy poverty is developed and innovative models utilizing primarily the geothermal resource in the East African region to mitigate this problem are proposed and analyzed. The role of hydrogen generation from critical excess electricity production is also analyzed. The East Africa region is considered the case study for implementing the models developed. A central renewable energy grid is proposed/modelled to meet the energy demand for seven East African countries namely; Ethiopia Tanzania Uganda Djibouti Comoros Eritrea and Rwanda. This study considers 2030 2040 and 2050 as the timestamp for the implementation of the proposed models. The hybrid mix of the biomass power plant solar photovoltaic (PV) pumped hydro storage system and onshore wind power is considered to furthermore show the potency of renewable energy resources in this region. Results showed that the use of geothermal energy to meet energy demands in the case study will mitigate energy poverty and enhance the region’s EWF.
Fuel Cell Electric Vehicle Hydrogen Consumption and Battery Cycle Optimization Using Bald Eagle Search Algorithm
Sep 2024
Publication
In this study the Bald Eagle Search Algorithm performed hydrogen consumption and battery cycle optimization of a fuel cell electric vehicle. To save time and cost the digital vehicle model created in Matlab/Simulink and validated with real-world driving data is the main platform of the optimization study. The digital vehicle model was run with the minimum and maximum battery charge states determined by the Bald Eagle Search Algorithm and hydrogen consumption and battery cycle values were obtained. By using the algorithm and digital vehicle model together hydrogen consumption was minimized and range was increased. It was aimed to extend the life of the parts by considering the battery cycle. At the same time the number of battery packs was included in the optimization and its effect on consumption was investigated. According to the study results the total hydrogen consumption of the fuel cell electric vehicle decreased by 57.8% in the hybrid driving condition 23.3% with two battery packs and 36.27% with three battery packs in the constant speed driving condition.
Hydrogen Fuel Cell as an Electric Generator: A Case Study for a General Cargo Ship
Feb 2024
Publication
In this study real voyage data and ship specifications of a general cargo ship are employed and it is assumed that diesel generators are replaced with hydrogen proton exchange membrane fuel cells. The effect of the replacement on CO2 NOX SOX and PM emissions and the CII value is calculated. Emission calculations show that there is a significant reduction in emissions when hydrogen fuel cells are used instead of diesel generators on the case ship. By using hydrogen fuel cells there is a 37.4% reduction in CO2 emissions 32.5% in NOX emissions 37.3% in SOX emissions and 37.4% in PM emissions. If hydrogen fuel cells are not used instead of diesel generators the ship will receive an A rating between 2023 and 2026 a B rating in 2027 a C rating in 2028–2029 and an E rating in 2030. On the other hand if hydrogen fuel cells are used the ship will always remain at an A rating between 2023 and 2030. The capital expenditure (CAPEX) and operational expenditure (OPEX) of the fuel cell system are USD 1305720 and USD 2470320 respectively for a 15-year lifetime and the hydrogen fuel expenses are competitive at USD 260981 while marine diesel oil (MDO) fuel expenses are USD 206435.
Selection Criteria and Ranking for Sustainable Hydrogen Production Options
Aug 2022
Publication
This paper aims to holistically study hydrogen production options essential for a sustainable and carbon-free future. This study also outlines the benefits and challenges of hydrogen production methods to provide sustainable alternatives to fossil fuels by meeting the global energy demand and net-zero targets. In this study sixteen hydrogen production methods are selected for sustainability investigation based on seven different criteria. The criteria selected in the comparative evaluation cover various dimensions of hydrogen production in terms of economic technical environmental and thermodynamic aspects for better sustainability. The current study results show that steam methane reforming with carbon capture could provide sustainable hydrogen in the near future while the other technologies’ maturity levels increase and the costs decrease. In the medium- and long-terms photonic and thermal-based hydrogen production methods can be the key to sustainable hydrogen production.
Spent Coffee Grains (SCG) to Biofuels: A Comparative Techno-economic Evaluation for Hydrogen and Methane Production
Jul 2025
Publication
Environmental concerns regarding greenhouse gases have spurred research into alternative energy sources. One of the most prevalent waste products in the beverage industry is spent coffee grains (SCG) an estimated 60 million tons globally each year. These quantities justify the need to find effective ways to recycle this waste through the adoption of closed-loop circular economies (CE) and sustainable biofuel strategies. One promising approach is the conversion of SCG into biofuels particularly biohydrogen and biomethane through biological processes. However prior to commercialization it is critical to validate its potential profitability via technical and economic analyses such as techno-economic assessment (TEA). To this end in this study the profitability of two scenarios for biohydrogen and biomethane production has been assessed to explore feasible processing routes for SCG valorization. First a two-step dark fermentation and anaerobic digestion (DF-AD) process and second a two-step dark fermentation and photo fermentation (DF-PF) process. The profitability and sensitivity analysis results clarified that Scenario I should be chosen over Scenario II due to its higher net present value (NPV) of 138 million $ internal rate of return (IRR) of 15.3 % gross margin (GM) of 56.9 % return on investment (ROI) of 12.7 % and shorter payback period (PBP) of 6.2 years.
Performance Assessment of a Solar Powered Hydrogen Production System and its ANFIS Model
Oct 2020
Publication
Apart from many limitations the usage of hydrogen in different day-to-day applications have been increasing drastically in recent years. However numerous techniques available to produce hydrogen electrolysis of water is one of the simplest and cost-effective hydrogen production techniques. In this method water is split into hydrogen and oxygen by using external electric current. In this research a novel hydrogen production system incorporated with Photovoltaic – Thermal (PVT) solar collector is developed. The influence of different parameters like solar collector tilt angle thermal collector design and type of heat transfer fluid on the performance of PVT system and hydrogen production system are also discussed. Finally thermal efficiency electrical efficiency and hydrogen production rate have been predicted by using the Adaptive Neuro-Fuzzy Inference System (ANFIS) technique. Based on this study results it can be inferred that the solar collector tilt angle plays a significant role to improve the performance of the electrical and thermal performance of PVT solar system and Hydrogen yield rate. On the other side the spiral-shaped thermal collector with water exhibited better end result than the other hydrogen production systems. The predicted results ANFIS techniques represent an excellent agreement with the experimental results. In consequence it is suggested that the developed ANFIS model can be adopted for further studies to predict the performance of the hydrogen production system.
Progress in Energy Storage Technologies and Methods for Renewable Energy Systems Application
May 2023
Publication
This paper provides a comprehensive review of the research progress current state-ofthe-art and future research directions of energy storage systems. With the widespread adoption of renewable energy sources such as wind and solar power the discourse around energy storage is primarily focused on three main aspects: battery storage technology electricity-to-gas technology for increasing renewable energy consumption and optimal configuration technology. The paper employs a visualization tool (CiteSpace) to analyze the existing works of literature and conducts an in-depth examination of the energy storage research hotspots in areas such as electrochemical energy storage hydrogen storage and optimal system configuration. It presents a detailed overview of common energy storage models and configuration methods. Based on the reviewed articles the future development of energy storage will be more oriented toward the study of power characteristics and frequency characteristics with more focus on the stability effects brought by transient shocks. This review article compiles and assesses various energy storage technologies for reference and future research.
No more items...