Turkey
Real-Time Modeling of a Solar-Driven Power Plant with Green Hydrogen, Electricity, and Fresh Water Production: Techno-Economics and Optimization
Apr 2025
Publication
Solar energy is important for the future as it provides a clean renewable source of electricity that can help combat climate change by reducing reliance on fossil fuels via implementing various solar-based energy systems. In this study a unique configuration for a parabolic-trough-based solar system is presented that allows energy storage for periods of time with insufficient solar radiation. This model based on extensive analysis in MATLAB utilizing real-time weather data demonstrates promising results with strong practical applicability. An organic Rankine cycle with a regenerative configuration is applied to produce electricity which is further utilized for hydrogen generation. A proton exchange membrane electrolysis (PEME) unit converts electricity to hydrogen a clean and versatile energy carrier since the electricity is solar based. To harness the maximum value from this system additional energy during peak times is used to produce clean water utilizing a reverse osmosis (RO) desalination unit. The system’s performance is examined by conducting a case study for the city of Antalya Turkey to attest to the unit’s credibility and performance. This system is also optimized via the Grey Wolf multi-objective algorithm from energy exergy and techno-economic perspectives. For the optimization scenario performed the energy and exergy efficiencies of the system and the levelized cost of products are found to be approximately 26.5% 28.5% and 0.106 $/kWh respectively.
Comparative Study of Hydrogen Storage and Metal Hydride Systems: Future Energy Storage Solutions
May 2025
Publication
Hydrogen is a key energy carrier playing a vital role in sustainable energy systems. This review provides a comparative analysis of physical chemical and innovative hydrogen storage methods from technical environmental and economic perspectives. It has been identified that compressed and liquefied hydrogen are predominantly utilized in transportation applications while chemical transport is mainly supported by liquid organic hydrogen carriers (LOHC) and ammonia-based systems. Although metal hydrides and nanomaterials offer high hydrogen storage capacities they face limitations related to cost and thermal management. Furthermore artificial intelligence (AI)- and machine learning (ML)-based optimization techniques are highlighted for their potential to enhance energy efficiency and improve system performance. In conclusion for hydrogen storage systems to achieve broader applicability it is recommended that integrated approaches be adopted—focusing on innovative material development economic feasibility and environmental sustainability
Selection of a Green Hydrogen Production Facility Location with a Novel Heuristic Approach
Mar 2025
Publication
The production of green hydrogen the cleanest energy source plays a crucial role in enhancing the efficiency of renewable energy systems by utilizing surplus energy that would otherwise be wasted. With the global shift towards sustainability and the rising adoption of renewable energy sources green hydrogen is gaining significant importance as both an energy carrier and a storage solution. However determining the optimal locations for green hydrogen production facilities remains a complex challenge due to the interplay of technical economic logistical and environmental factors. This study introduces the City Location Evaluation Optimization for Green Hydrogen (CELO_GH) algorithm a novel heuristic approach designed to address this challenge. Unlike conventional multi-criteria decision-making (MCDM) models CELO_GH dynamically evaluates cities by considering renewable energy surplus proximity to industrial hydrogen demand port and pipeline accessibility and economic viability. A case study conducted in Turkey demonstrates the effectiveness of the approach by identifying optimal cities for green hydrogen production based on real-world energy and infrastructure data. The problem was also solved with the genetic algorithm and the results were compared and it was seen that the proposed heuristic provides the lowest cost location selection. A geographically flexible methodology as the proposed algorithm can be applied globally to regions with high renewable energy potential ensuring scalability and adaptability for future energy transition strategies. The results provide valuable insights for policy-makers energy investors and industrial planners aiming to optimize green hydrogen infrastructure while ensuring cost efficiency and sustainability.
Optimizing Hydrogen Storage and Fuel Cell Performance Using Carbon-Based Materials: Insights into Pressure and Surface Area Effects
Mar 2025
Publication
Efficient hydrogen storage is critical for advancing hydrogen-based technologies. This study investigates the effects of pressure and surface area on hydrogen storage in three carbon-based materials: graphite graphene oxide and reduced graphene oxide. Hydrogen adsorption–desorption experiments under pressures ranging from 1 to 9 bar revealed nonlinear storage capacity responses with optimal performance at around 5 bar. The specific surface area plays a pivotal role with reduced graphene oxide and exhibiting a surface area of 70.31 m2/g outperforming graphene oxide (33.75 m2/g) and graphite (7.27 m2/g). Reduced graphene oxide achieved the highest hydrogen storage capacity with 768 sccm and a 3 wt.% increase over the other materials. In assessing proton-exchange fuel cell performance this study found that increased hydrogen storage correlates with enhanced power density with reduced graphene oxide reaching a maximum of 0.082 W/cm2 compared to 0.071 W/cm2 for graphite and 0.017 W/cm2 for graphene oxide. However desorption rates impose temporal constraints on fuel cell operation. These findings enhance our understanding of pressure–surface interactions and underscore the balance between hydrogen storage capacity surface area and practical performance in carbon-based materials offering valuable insights for hydrogen storage and fuel cell applications.
An Investigation into the Ability of a Solar Photovoltaic– Hydrogen System to Meet the Electrical Energy Demand of Houses in Different Cities in Türkiye
Mar 2025
Publication
In this study the annual electricity consumption of nine real houses from different cities in Türkiye was recorded on a monthly basis. The feasibility of meeting the electrical energy needs of houses with hydrogen and supplying the energy required for hydrogen production using solar panels is examined. The annual electricity consumption of the houses was normalized based on house size. The solar panel area for hydrogen production needed for these houses was defined. Additionally it was calculated that the average volumetric amount of hydrogen produced per hour during peak sun hours in the investigated cities was 1 m3/h. This approach reduced the solar panel area for hydrogen production by a factor of 1.7.
A Holistic Study on Solar Photovoltaic-based Cleaner Hydrogen Production Facilities: Economic and Performance Assessments
Oct 2025
Publication
This study presents a holistic technoeconomic analysis of solar photovoltaic-based green hydrogen production facilities assessing hydrogen output potential and cost structures under various facility configurations. Four system cases are defined based on the inclusion of new photovoltaic (PV) panels and hydrogen storage (HS) subsystems considering Southern Ontario solar data and a 30-year operational lifespan. Through a system level modeling we incorporate the initial costs of sub-systems (PV panels power conditioning devices electrolyser battery pack and hydrogen storage) operating and maintenance expenses and replacement costs to determine the levelized cost of hydrogen (LCOH). The results of this study indicate that including hydrogen storage significantly impacts optimal electrolyser sizing creating a production bottleneck around 400 kW for a 1 MWp PV system (yielding approximately 590 tons H2 over a period of 30 years) whereas systems without storage achieve higher yields (about 1080 tons of H2) with larger electrolysers (approximately 620 kW). The lifetime cost analysis reveals that operating and maintenance cost constitutes the dominant expenditure (68–76 %). Including hydrogen storage increases the minimum LCOH and sharply penalizes electrolyser oversizing relative to storage capacity. For a 1 MWp base system minimum LCOH ranged from approximately $3.50/kg (existing PV no HS) to $6/kg (existing PV with HS) $11–12/kg (new PV no HS) and $22–25/kg (new PV with HS). Leveraging existing PV infrastructure drastically reduces LCOH. Furthermore significant economies of scale are observed with increasing PV facility capacity potentially lowering LCOH below $2/kg at the 100 MWp scale. The study therefore underscores that there is a critical interplay between system configuration component sizing operating and maintenance management and facility scale in determining the economic viability of solar hydrogen production.
The Hydrogen Revolution in Diesel Engines: A Comprehensive Review of Performance, Combustion, and Emissions
Aug 2025
Publication
Fossil fuels have been the conventional source of energy that has driven economic growth and industrial development for a long time. However their extensive use has led to immense environmental problems especially concerning the emission of greenhouse gases. These problems have stimulated researchers to turn their attention to renewable alternative fuels. Hydrogen has risen in recent years as a prospective energy carrier because it is possible to produce it in an environmentally friendly manner and because it is the most common element. Hydrogen may be used in diesel engines in a dual-fuel mode. Hydrogen has a higher heating value flame speed and diffusivity in air. These superior fuel properties can enhance performance and combustion efficiency. Hydrogen can decrease carbon monoxide unburned hydrocarbons and soot emissions due to the absence of carbon in hydrogen. However hydrogen-fuelled diesel engines have problems such as engine knocking and high nitrogen oxide emission. This paper presents a comprehensive review of the recent literature on the performance combustion and emission characteristics of hydrogen-fuelled diesel engines. Moreover this paper discusses the long-term sustainability of hydrogen production methods nitrogen oxide emission reduction techniques challenges to the large-scale use of hydrogen economic implications of hydrogen use safety issues in hydrogen applications regulations on hydrogen safety conflicting NOx emission results in the literature and material incompatibility issues in hydrogen applications. This study highlights state-of-the-art developments along with critical knowledge gaps that will be useful in guiding future research. These findings can support researchers and industry professionals in the integration of hydrogen into both existing and future diesel engine technologies. According to the literature the use of hydrogen up to 46% decreased smoke emissions by over 75% while CO2 and CO emissions significantly decreased. Moreover hydrogen addition improved thermal efficiency up to 7.01% and decreased specific fuel consumption up to 7.19%.
Green Hydrogen Production by Water Electrolysis: Current Status and Challenges
Apr 2024
Publication
The scientific and industrial communities worldwide have recently achieved impressive technical advances in developing innovative electrocatalysts and electrolysers for water and seawater splitting. The viability of water electrolysis for commercial applications however remains elusive and the key barriers are durability cost performance materials manufacturing and system simplicity especially with regard to running on practical water sources like seawater. This paper therefore primarily aims to provide a concise overview of the most recent disruptive water-splitting technologies and materials that could reshape the future of green hydrogen production. Starting from water electrolysis fundamentals the recent advances in developing durable and efficient electrocatalysts for modern types of electrolysers such as decoupled electrolysers seawater electrolysers and unconventional hybrid electrolysers have been represented and precisely annotated in this report. Outlining the most recent advances in water and seawater splitting the paper can help as a quick guide in identifying the gap in knowledge for modern water electrolysers while pointing out recent solutions for cost-effective and efficient hydrogen production to meet zero-carbon targets in the short to near term.
A Systematic Review of Predictive, Optimization, and Smart Control Strategies for Hydrogen-based Building Heating Systems
Nov 2024
Publication
The use of energy in the built environment contributes to over one-third of the world’s carbon emissions. To reduce that effect two primary solutions can be adopted i.e. (i) renovation of old buildings and (ii) increasing the renewable energy penetration. This review paper focuses on the latter. Renewable energy sources typically have an intermittent nature. In other words it is not guaranteed that these sources can be harnessed on demand. Thus complement solutions should be considered to use renewable energy sources efficiently. Hydrogen is recognized as a potential solution. It can be used to store excess energy or be directly exploited to generate thermal energy. Throughout this review various research papers focusing on hydrogen-based heating systems were reviewed analyzed and classified from different perspectives. Subsequently articles related to machine learning models optimization algorithms and smart control systems along with their applications in building energy management were reviewed to outline their potential contributions to reducing energy use lowering carbon emissions and improving thermal comfort for occupants. Furthermore research gaps in the use of these smart strategies in residential hydrogen heating systems were thoroughly identified and discussed. The presented findings indicate that the semi-decentralized hydrogen-based heating systems hold significant potential. First these systems can control the thermal demand of neighboring homes through local substations; second they can reduce reliance on power and gas grids. Furthermore the model predictive control and reinforcement learning approaches outperform other control systems ensuring energy comfort and cost-effective energy bills for residential buildings.
Techno-Economic Analysis of Combined Production of Wind Energy and Green Hydrogen on the Northern Coast of Mauritania
Sep 2024
Publication
Green hydrogen is becoming increasingly popular with academics institutions and governments concentrating on its development efficiency improvement and cost reduction. The objective of the Ministry of Petroleum Mines and Energy is to achieve a 35% proportion of renewable energy in the overall energy composition by the year 2030 followed by a 50% commitment by 2050. This goal will be achieved through the implementation of feed-in tariffs and the integration of independent power generators. The present study focused on the economic feasibility of green hydrogen and its production process utilizing renewable energy resources on the northern coast of Mauritania. The current investigation also explored the wind potential along the northern coast of Mauritania spanning over 600 km between Nouakchott and Nouadhibou. Wind data from masts Lidar stations and satellites at 10 and 80 m heights from 2022 to 2023 were used to assess wind characteristics and evaluate five turbine types for local conditions. A comprehensive techno-economic analysis was carried out at five specific sites encompassing the measures of levelized cost of electricity (LCOE) and levelized cost of green hydrogen (LCOGH) as well as sensitivity analysis and economic performance indicators. The results showed an annual average wind speed of 7.6 m/s in Nouakchott to 9.8 m/s in Nouadhibou at 80 m. The GOLDWIND 3.0 MW model showed the highest capacity factor of 50.81% due to its low cut-in speed of 2.5 m/s and its rated wind speed of 10.5 to 11 m/s. The NORDEX 4 MW model forecasted an annual production of 21.97 GWh in Nouadhibou and 19.23 GWh in Boulanoir with the LCOE ranging from USD 5.69 to 6.51 cents/kWh below the local electricity tariff and an LCOGH of USD 1.85 to 2.11 US/kg H2 . Multiple economic indicators confirmed the feasibility of wind energy and green hydrogen projects in assessed sites. These results boosted the confidence of the techno-economic model highlighting the resilience of future investments in these sustainable energy infrastructures. Mauritania’s north coast has potential for wind energy aiding green hydrogen production for energy goals.
Implementation of a Decision-making Approach for a Hydrogen-based Multi-energy System Considering EVs and FCEVs Availability
Aug 2024
Publication
Innovative green vehicle concepts have become increasingly prevailing in consumer purchasing habits as technology evolves. The global transition towards sustainable transportation indicates an increase in new-generation vehicles including both fuel-cell electric vehicles (FCEVs) and plug-in electric vehicles (PEVs) that will take on roads in the future. This change requires new-generation stations to support electrification. This study introduced a prominent multi-energy system concept with a hydrogen refueling station. The proposed multi-energy system (MES) consists of green hydrogen production a hydrogen refueling station for FCEVs hydrogen injection into natural gas (NG) and a charging station for PEVs. An on-site renewable system projected at the station and a polymer electrolyte membrane electrolyzer (PEM) to produce hydrogen for two significant consumers support MES. In addition the MES offers the ability to conduct two-way trade with the grid if renewable energy systems are insufficient. This study develops a comprehensive multi-energy system with an economically optimized energy management model using a mixed-integer linear programming (MILP) approach. The determinative datasets of vehicles are generated in a Python environment using Gauss distribution. The fleet of FCEVs and PEVs are currently available on the market. The study includes fleets of the most common models from well-known brands. The results indicate that profits increase when the storage capacity of the hydrogen tank is higher and natural gas injections are limitless. Optimization results for all cases tend to choose higher-priced natural gas injections over hydrogen refueling because of the difference in costs of refueling and injection expenses. The analyses reveal the highest hydrogen sales to the natural gas (NG) grid by consuming 2214.31 kg generating a revenue of $6966 and in contrast the lowest hydrogen sales to the natural gas grid at 1045.38 kg resulting in a revenue of $3286. Regarding electricity the highest sales represent revenue of $7701 and $2375 for distribution system consumption and electric vehicles (EV) respectively. Conversely Cases 1 and 2 have achieved sales to EV of $2286 and $2349 respectively but do not have any sales to distribution system consumption regarding the constraints. Overall the optimization results show that the solution is optimal for a multi-energy system operator to achieve higher profits and that all end-user parties are satisfied.
Hydrogen Storage Solutions for Residential Heating: A Thermodynamic and Economic Analysis with Scale-up Potential
Jul 2024
Publication
The study presents a thermodynamic and economic assessment of different hydrogen storage solutions for heating purposes powered by PV panels of a 10-apartment residential building in Milan and it focuses on compressed hydrogen liquid hydrogen and metal hydride. The technical assessment involves using Python to code thermodynamic models to address technical and thermodynamic performances. The economic analysis evaluates the CAPEX the ROI and the cost per unit of stored hydrogen and energy. The study aims to provide an accurate assessment of the thermodynamic and economic indicators of three of the storage methods introduced in the literature review pointing out the one with the best techno-economic performance for further development and research. The performed analysis shows that compressed hydrogen represents the best alternative but its cost is still too high for small residential applications. Applying the technology to a big system case would enable the solution making it economically feasible.
Roadmap for the Decarbonization of Domestic Passenger Ferries in the Republic of Korea
Feb 2025
Publication
This study examines the steps to lower air emissions in South Korea’s domestic shipping sector. It highlights the significant contributions of the sector to air pollution and greenhouse gas emissions emphasizing its impact on environmental sustainability and climate change mitigation. By looking at the current shipping energy use and emissions the research identifies ways to reduce the environmental impact of domestic shipping. Data was collected from domestic ferry routes and the fuel use was reviewed with respect to existing global technologies for reducing emissions. The results show that operational changes and current energy-efficient technologies can quickly cut emissions. Furthermore a long-term plan is suggested involving the development of new ship designs and the use of net-zero fuels like biofuels methanol hydrogen and ammonia. These efforts aim to meet climate goals targeting a 40% reduction in greenhouse emissions by 2030 and a 70% reduction by 2050 making South Korea’s shipping industry more sustainable and resilient.
Towards a Synthetic Positive Energy District (PED) in ˙Istanbul: Balancing Cost, Mobility, and Environmental Impact
Oct 2024
Publication
The influence of mobility modes within Positive Energy Districts (PEDs) has gained limited attention despite their crucial role in reducing energy consumption and greenhouse gas emissions. Buildings in the European Union (EU) account for 40% of energy consumption and 36% of greenhouse gas emissions. In comparison transport contributes 28% of energy use and 25% of emissions with road transport responsible for 72% of these emissions. This study aims to design and optimize a synthetic PED in Istanbul that integrates renewable energy sources and public mobility systems to address these challenges. The renewable energy sources integrated into the synthetic PED model include solar energy hydrogen energy and regenerative braking energy from a tram system. Solar panels provided a substantial portion of the energy while hydrogen energy contributed to additional electricity generation. Regenerative braking energy from the tram system was also utilized to further optimize energy production within the district. This system powers a middle school 10 houses a supermarket and the tram itself. Optimization techniques including Linear Programming (LP) for economic purposes and the Weighted Sum Method (WSM) for environmental goals were applied to balance cost and CO2 emissions. The LP method identified that the PED model can achieve cost competitiveness with conventional energy grids when hydrogen costs are below $93.16/MWh. Meanwhile the WSM approach demonstrated that achieving a minimal CO2 emission level of 5.74 tons requires hydrogen costs to be $32.55/MWh or lower. Compared to a conventional grid producing 97 tons of CO2 annually the PED model achieved reductions of up to 91.26 tons. This study contributes to the ongoing discourse on sustainable urban energy systems by addressing key research gaps related to the integration of mobility modes within PEDs and offering insights into the optimization of renewable energy sources for reducing emissions and energy consumption.
An Overview of Different Water Electrolyzer Types for Hydrogen Production
Oct 2024
Publication
While fossil fuels continue to be used and to increase air pollution across the world hydrogen gas has been proposed as an alternative energy source and a carrier for the future by scientists. Water electrolysis is a renewable and sustainable chemical energy production method among other hydrogen production methods. Hydrogen production via water electrolysis is a popular and expensive method that meets the high energy requirements of most industrial electrolyzers. Scientists are investigating how to reduce the price of water electrolytes with different methods and materials. The electrolysis structure equations and thermodynamics are first explored in this paper. Water electrolysis systems are mainly classified as high- and low-temperature electrolysis systems. Alkaline PEM-type and solid oxide electrolyzers are well known today. These electrolyzer materials for electrode types electrolyte solutions and membrane systems are investigated in this research. This research aims to shed light on the water electrolysis process and materials developments.
The Influence of Gas Fuel Enrichment with Hydrogen on the Combustion Characteristics of Combustors: A Review
Oct 2024
Publication
Hydrogen is a promising fuel because it has good capabilities to operate gas turbines. Due to its ignition speed which exceeds the ignition of traditional fuel it achieves a higher thermal efficiency while the resulting emissions are low. So it was used as a clean and sustainable energy source. This paper reviews the most important research that was concerned with studying the characteristics of hydrogen combustion within incinerators and power generation equipment where hydrogen was used as a fuel mixed with traditional fuel in the combustion chambers of gas turbines. It also includes an evaluation of the combustion processes and flame formation resulting from the enrichment of gaseous fuels with hydrogen and partial oxidation. A large amount of theoretical and experimental work in this field has been reviewed. This review summarizes the predictive and experimental results of various research interests in the field of hydrogen combustion and also production.
Leakage Rates of Hydrogen-methane Gas Blends under Varying Pressure Conditions
Nov 2024
Publication
Integration of hydrogen into the existing natural gas infrastructure is considered a potential pathway that can accelerate the incorporation of hydrogen into the energy sector. While blending renewable hydrogen with natural gas offers advantages such as reduced carbon intensity and the ability to utilize existing infrastructure for hydrogen storage and transportation there are several concerns including leakage and associated issues. Un derstanding the behavior of hydrogen blended with natural gas in the existing infrastructure is crucial to ensure safe and efficient integration. In this study the leakage rates of mixtures of hydrogen and methane at different molar concentrations (5% 10% 20% and 50% hydrogen) through both precision machined orifices and com mon pipe fitting threads were investigated. The experiments showed that the leakage rates of these mixtures increased as the hydrogen content increased; however gas chromatography (GC) analysis showed that hydrogen did not leak preferentially at a greater rate than methane. The results indicate that mixing hydrogen with methane can increase the volume of gas leakage under the same pressure conditions. These findings suggest that mixing hydrogen with natural gas may result in increased volumetric flow rate of gas leaks but hydrogen alone does not leak preferentially to methane.
The Role of Hydrogen in the Energy Mix: A Scenario Analysis for Turkey Using OSeMOSYS
Dec 2024
Publication
The urgent need to tackle climate change drives the research on new technologies to help the transition of energy systems. Hydrogen is under significant consideration by many countries as a means to reach zero-carbon goals. Turkey has also started to develop hydrogen projects. In this study the role of hydrogen in Turkey’s energy system is assessed through energy modeling using the cost optimization analytical tool Open Source Energy Modelling System (OSeMOSYS). The potential effects of hydrogen blending into the natural gas network in the Turkish energy system have been displayed by scenario development. The hydrogen is produced via electrolysis using renewable electricity. As a result by using hydrogen a significant reduction in carbon dioxide emissions was observed; however the accumulated capital investment value increased. Furthermore it was shown that hydrogen has the potential to reduce Turkey’s energy import dependency by decreasing natural gas demand.
Design of an Electric Vehicle Charging System Consisting of PV and Fuel Cell for Historical and Tourist Regions
Jun 2024
Publication
One of the most important problems in the widespread use of electric vehicles is the lack of charging infrastructure. Especially in tourist areas where historical buildings are located the installation of a power grid for the installation of electric vehicle charging stations or generating electrical energy by installing renewable energy production systems such as large-sized PV (photovoltaic) and wind turbines poses a problem because it causes the deterioration of the historical texture. Considering the need for renewable energy sources in the transportation sector our aim in this study is to model an electric vehicle charging station using PVPS (photovoltaic power system) and FC (fuel cell) power systems by using irradiation and temperature data from historical regions. This designed charging station model performs electric vehicle charging meeting the energy demand of a house and hydrogen production by feeding the electrolyzer with the surplus energy from producing electrical energy with the PVPS during the daytime. At night when there is no solar radiation electric vehicle charging and residential energy demand are met with an FC power system. One of the most important advantages of this system is the use of hydrogen storage instead of a battery system for energy storage and the conversion of hydrogen into electrical energy with an FC. Unlike other studies in our study fossil energy sources such as diesel generators are not included for the stable operation of the system. The system in this study may need hydrogen refueling in unfavorable climatic conditions and the energy storage capacity is limited by the hydrogen fuel tank capacity.
Decarbonizing Rural Off-Grid Areas Through Hybrid Renewable Hydrogen Systems: A Case Study from Turkey
Sep 2025
Publication
Access to renewable energy is vital for rural development and climate change mitigation. The intermittency of renewable sources necessitates efficient energy storage especially in off-grid applications. This study evaluates the technical economic and environmental performance of an off-grid hybrid system for the rural settlement of Soma Turkey. Using HOMER Pro 3.14.2 software a system consisting of solar wind battery and hydrogen components was modeled under four scenarios with Cyclic Charging (CC) and Load Following (LF) control strategies for optimization. Life cycle assessment (LCA) and hydrogen leakage impacts were calculated separately through MATLAB R2019b analysis in accordance with ISO 14040 and ISO 14044 standards. Scenario 1 (PV + wind + battery + H2) offered the most balanced solution with a net present cost (NPC) of USD 297419 with a cost of electricity (COE) of USD 0.340/kWh. Scenario 2 without batteries increased hydrogen consumption despite a similar COE. Scenario 3 with wind only achieved the lowest hydrogen consumption and the highest efficiency. In Scenario 4 hydrogen consumption decreased with battery reintegration but COE increased. Specific CO2 emissions ranged between 36–45 gCO2-eq/kWh across scenarios. Results indicate that the control strategy and component selection strongly influence performance and that hydrogen-based hybrid systems offer a sustainable solution in rural areas.
No more items...