Turkey
Implementation of a Decision-making Approach for a Hydrogen-based Multi-energy System Considering EVs and FCEVs Availability
Aug 2024
Publication
Innovative green vehicle concepts have become increasingly prevailing in consumer purchasing habits as technology evolves. The global transition towards sustainable transportation indicates an increase in new-generation vehicles including both fuel-cell electric vehicles (FCEVs) and plug-in electric vehicles (PEVs) that will take on roads in the future. This change requires new-generation stations to support electrification. This study introduced a prominent multi-energy system concept with a hydrogen refueling station. The proposed multi-energy system (MES) consists of green hydrogen production a hydrogen refueling station for FCEVs hydrogen injection into natural gas (NG) and a charging station for PEVs. An on-site renewable system projected at the station and a polymer electrolyte membrane electrolyzer (PEM) to produce hydrogen for two significant consumers support MES. In addition the MES offers the ability to conduct two-way trade with the grid if renewable energy systems are insufficient. This study develops a comprehensive multi-energy system with an economically optimized energy management model using a mixed-integer linear programming (MILP) approach. The determinative datasets of vehicles are generated in a Python environment using Gauss distribution. The fleet of FCEVs and PEVs are currently available on the market. The study includes fleets of the most common models from well-known brands. The results indicate that profits increase when the storage capacity of the hydrogen tank is higher and natural gas injections are limitless. Optimization results for all cases tend to choose higher-priced natural gas injections over hydrogen refueling because of the difference in costs of refueling and injection expenses. The analyses reveal the highest hydrogen sales to the natural gas (NG) grid by consuming 2214.31 kg generating a revenue of $6966 and in contrast the lowest hydrogen sales to the natural gas grid at 1045.38 kg resulting in a revenue of $3286. Regarding electricity the highest sales represent revenue of $7701 and $2375 for distribution system consumption and electric vehicles (EV) respectively. Conversely Cases 1 and 2 have achieved sales to EV of $2286 and $2349 respectively but do not have any sales to distribution system consumption regarding the constraints. Overall the optimization results show that the solution is optimal for a multi-energy system operator to achieve higher profits and that all end-user parties are satisfied.
Hydrogen Storage Solutions for Residential Heating: A Thermodynamic and Economic Analysis with Scale-up Potential
Jul 2024
Publication
The study presents a thermodynamic and economic assessment of different hydrogen storage solutions for heating purposes powered by PV panels of a 10-apartment residential building in Milan and it focuses on compressed hydrogen liquid hydrogen and metal hydride. The technical assessment involves using Python to code thermodynamic models to address technical and thermodynamic performances. The economic analysis evaluates the CAPEX the ROI and the cost per unit of stored hydrogen and energy. The study aims to provide an accurate assessment of the thermodynamic and economic indicators of three of the storage methods introduced in the literature review pointing out the one with the best techno-economic performance for further development and research. The performed analysis shows that compressed hydrogen represents the best alternative but its cost is still too high for small residential applications. Applying the technology to a big system case would enable the solution making it economically feasible.
Roadmap for the Decarbonization of Domestic Passenger Ferries in the Republic of Korea
Feb 2025
Publication
This study examines the steps to lower air emissions in South Korea’s domestic shipping sector. It highlights the significant contributions of the sector to air pollution and greenhouse gas emissions emphasizing its impact on environmental sustainability and climate change mitigation. By looking at the current shipping energy use and emissions the research identifies ways to reduce the environmental impact of domestic shipping. Data was collected from domestic ferry routes and the fuel use was reviewed with respect to existing global technologies for reducing emissions. The results show that operational changes and current energy-efficient technologies can quickly cut emissions. Furthermore a long-term plan is suggested involving the development of new ship designs and the use of net-zero fuels like biofuels methanol hydrogen and ammonia. These efforts aim to meet climate goals targeting a 40% reduction in greenhouse emissions by 2030 and a 70% reduction by 2050 making South Korea’s shipping industry more sustainable and resilient.
Towards a Synthetic Positive Energy District (PED) in ˙Istanbul: Balancing Cost, Mobility, and Environmental Impact
Oct 2024
Publication
The influence of mobility modes within Positive Energy Districts (PEDs) has gained limited attention despite their crucial role in reducing energy consumption and greenhouse gas emissions. Buildings in the European Union (EU) account for 40% of energy consumption and 36% of greenhouse gas emissions. In comparison transport contributes 28% of energy use and 25% of emissions with road transport responsible for 72% of these emissions. This study aims to design and optimize a synthetic PED in Istanbul that integrates renewable energy sources and public mobility systems to address these challenges. The renewable energy sources integrated into the synthetic PED model include solar energy hydrogen energy and regenerative braking energy from a tram system. Solar panels provided a substantial portion of the energy while hydrogen energy contributed to additional electricity generation. Regenerative braking energy from the tram system was also utilized to further optimize energy production within the district. This system powers a middle school 10 houses a supermarket and the tram itself. Optimization techniques including Linear Programming (LP) for economic purposes and the Weighted Sum Method (WSM) for environmental goals were applied to balance cost and CO2 emissions. The LP method identified that the PED model can achieve cost competitiveness with conventional energy grids when hydrogen costs are below $93.16/MWh. Meanwhile the WSM approach demonstrated that achieving a minimal CO2 emission level of 5.74 tons requires hydrogen costs to be $32.55/MWh or lower. Compared to a conventional grid producing 97 tons of CO2 annually the PED model achieved reductions of up to 91.26 tons. This study contributes to the ongoing discourse on sustainable urban energy systems by addressing key research gaps related to the integration of mobility modes within PEDs and offering insights into the optimization of renewable energy sources for reducing emissions and energy consumption.
An Overview of Different Water Electrolyzer Types for Hydrogen Production
Oct 2024
Publication
While fossil fuels continue to be used and to increase air pollution across the world hydrogen gas has been proposed as an alternative energy source and a carrier for the future by scientists. Water electrolysis is a renewable and sustainable chemical energy production method among other hydrogen production methods. Hydrogen production via water electrolysis is a popular and expensive method that meets the high energy requirements of most industrial electrolyzers. Scientists are investigating how to reduce the price of water electrolytes with different methods and materials. The electrolysis structure equations and thermodynamics are first explored in this paper. Water electrolysis systems are mainly classified as high- and low-temperature electrolysis systems. Alkaline PEM-type and solid oxide electrolyzers are well known today. These electrolyzer materials for electrode types electrolyte solutions and membrane systems are investigated in this research. This research aims to shed light on the water electrolysis process and materials developments.
The Influence of Gas Fuel Enrichment with Hydrogen on the Combustion Characteristics of Combustors: A Review
Oct 2024
Publication
Hydrogen is a promising fuel because it has good capabilities to operate gas turbines. Due to its ignition speed which exceeds the ignition of traditional fuel it achieves a higher thermal efficiency while the resulting emissions are low. So it was used as a clean and sustainable energy source. This paper reviews the most important research that was concerned with studying the characteristics of hydrogen combustion within incinerators and power generation equipment where hydrogen was used as a fuel mixed with traditional fuel in the combustion chambers of gas turbines. It also includes an evaluation of the combustion processes and flame formation resulting from the enrichment of gaseous fuels with hydrogen and partial oxidation. A large amount of theoretical and experimental work in this field has been reviewed. This review summarizes the predictive and experimental results of various research interests in the field of hydrogen combustion and also production.
Leakage Rates of Hydrogen-methane Gas Blends under Varying Pressure Conditions
Nov 2024
Publication
Integration of hydrogen into the existing natural gas infrastructure is considered a potential pathway that can accelerate the incorporation of hydrogen into the energy sector. While blending renewable hydrogen with natural gas offers advantages such as reduced carbon intensity and the ability to utilize existing infrastructure for hydrogen storage and transportation there are several concerns including leakage and associated issues. Un derstanding the behavior of hydrogen blended with natural gas in the existing infrastructure is crucial to ensure safe and efficient integration. In this study the leakage rates of mixtures of hydrogen and methane at different molar concentrations (5% 10% 20% and 50% hydrogen) through both precision machined orifices and com mon pipe fitting threads were investigated. The experiments showed that the leakage rates of these mixtures increased as the hydrogen content increased; however gas chromatography (GC) analysis showed that hydrogen did not leak preferentially at a greater rate than methane. The results indicate that mixing hydrogen with methane can increase the volume of gas leakage under the same pressure conditions. These findings suggest that mixing hydrogen with natural gas may result in increased volumetric flow rate of gas leaks but hydrogen alone does not leak preferentially to methane.
The Role of Hydrogen in the Energy Mix: A Scenario Analysis for Turkey Using OSeMOSYS
Dec 2024
Publication
The urgent need to tackle climate change drives the research on new technologies to help the transition of energy systems. Hydrogen is under significant consideration by many countries as a means to reach zero-carbon goals. Turkey has also started to develop hydrogen projects. In this study the role of hydrogen in Turkey’s energy system is assessed through energy modeling using the cost optimization analytical tool Open Source Energy Modelling System (OSeMOSYS). The potential effects of hydrogen blending into the natural gas network in the Turkish energy system have been displayed by scenario development. The hydrogen is produced via electrolysis using renewable electricity. As a result by using hydrogen a significant reduction in carbon dioxide emissions was observed; however the accumulated capital investment value increased. Furthermore it was shown that hydrogen has the potential to reduce Turkey’s energy import dependency by decreasing natural gas demand.
Design of an Electric Vehicle Charging System Consisting of PV and Fuel Cell for Historical and Tourist Regions
Jun 2024
Publication
One of the most important problems in the widespread use of electric vehicles is the lack of charging infrastructure. Especially in tourist areas where historical buildings are located the installation of a power grid for the installation of electric vehicle charging stations or generating electrical energy by installing renewable energy production systems such as large-sized PV (photovoltaic) and wind turbines poses a problem because it causes the deterioration of the historical texture. Considering the need for renewable energy sources in the transportation sector our aim in this study is to model an electric vehicle charging station using PVPS (photovoltaic power system) and FC (fuel cell) power systems by using irradiation and temperature data from historical regions. This designed charging station model performs electric vehicle charging meeting the energy demand of a house and hydrogen production by feeding the electrolyzer with the surplus energy from producing electrical energy with the PVPS during the daytime. At night when there is no solar radiation electric vehicle charging and residential energy demand are met with an FC power system. One of the most important advantages of this system is the use of hydrogen storage instead of a battery system for energy storage and the conversion of hydrogen into electrical energy with an FC. Unlike other studies in our study fossil energy sources such as diesel generators are not included for the stable operation of the system. The system in this study may need hydrogen refueling in unfavorable climatic conditions and the energy storage capacity is limited by the hydrogen fuel tank capacity.
Decarbonizing Rural Off-Grid Areas Through Hybrid Renewable Hydrogen Systems: A Case Study from Turkey
Sep 2025
Publication
Access to renewable energy is vital for rural development and climate change mitigation. The intermittency of renewable sources necessitates efficient energy storage especially in off-grid applications. This study evaluates the technical economic and environmental performance of an off-grid hybrid system for the rural settlement of Soma Turkey. Using HOMER Pro 3.14.2 software a system consisting of solar wind battery and hydrogen components was modeled under four scenarios with Cyclic Charging (CC) and Load Following (LF) control strategies for optimization. Life cycle assessment (LCA) and hydrogen leakage impacts were calculated separately through MATLAB R2019b analysis in accordance with ISO 14040 and ISO 14044 standards. Scenario 1 (PV + wind + battery + H2) offered the most balanced solution with a net present cost (NPC) of USD 297419 with a cost of electricity (COE) of USD 0.340/kWh. Scenario 2 without batteries increased hydrogen consumption despite a similar COE. Scenario 3 with wind only achieved the lowest hydrogen consumption and the highest efficiency. In Scenario 4 hydrogen consumption decreased with battery reintegration but COE increased. Specific CO2 emissions ranged between 36–45 gCO2-eq/kWh across scenarios. Results indicate that the control strategy and component selection strongly influence performance and that hydrogen-based hybrid systems offer a sustainable solution in rural areas.
Design and Optimization of a Solely Renewable Based Hybrid Energy System for Residential Electrical Load and Fuel Cell Electric Vehicle
Sep 2020
Publication
Due to increasing energy demand limited fossil fuels and increasing greenhouse gasses people is in need for alternative energy sources to have a sustainable world. The objective of this study is to look for alternative solutions and design a hybrid energy system to meet any energy needs of a single family house including both utility and transportation. The system is designed and optimized using HOMER software. According to the optimization studies levelized cost of electricity and hydrogen production was found to be 0.685$/kWh and 6.85$/kg respectively and the cost of hydrogen which is half of its market price is very attractive. To project possible future costs in advance sensitivity analysis was carried out and the results show that when the main components’ price decays to the half both costs of energy will be reduced by 26.4%. This implies that further decrease on the components’ cost would bring the cost of energy to the level of energy produced by fossil fuels or even lower. Hydrogen would also be produced with much lower and tempting price. It is important to note that energy used by residential electrical load and fuel cell electric car in this study was generated by sole renewable energies and the system consumes zero fossil fuels thus emitting no greenhouse gasses. The study considering both utility and transportation simultaneously is believed to be the first on a small scale and to attract the interest of everyone.
Thermoeconomic Analysis of a Integrated Membrane Reactor and Carbon Dioxide Capture System Producing Decarbonized Hydrogen
Jan 2025
Publication
In this study a novel thermo-economic analysis on a membrane reactor adopted to generate hydrogen coupled to a carbon-dioxide capture system is proposed. Exergy destruction fuel and environmental as well as pur chased equipment costs have been accounted to estimate the cost of hydrogen production in the aforementioned integrated plant. It has been found that the integration of the CO2 capture system with the membrane reactor is responsible for the reduction of the hydrogen production cost by 12 % due to the decrease in environmental penalty cost. In addition the effects of operating parameters (steam-to-carbo ratio and biogas temperature) on the hydrogen production cost are investigated. Hence this work demonstrates that the latter can be decreased by approximately 2 $/kgH2 when steam to carbon ratio increases from 1.5 to 4. The analyses reveal that steam-tocarbo ratio increases exergy destruction cost affecting consequently also the hydrogen production cost. How ever from a thermodynamic point of view it enhances the hydrogen production in the membrane reactor mutually lowering the hydrogen production cost. It has been also estimated that a decrease in the biogas inlet temperature from 450 to 400◦C can reduce the hydrogen production cost by 7 %. This study demonstrates that the fuel cost is a major economic parameter affecting commercialization of hydrogen production while exergy destruction and environmental costs are also significant factors in determining the hydrogen production cost.
Design and Analysis of Small‑Scale Hydrogen Valleys Success Factors: A Stratified Network‑Based Hybrid Fuzzy Approach
Sep 2025
Publication
Hydrogen energy one of the renewable energy sources plays a crucial role in combating climate change since its usage aims to reduce carbon emissions and enhance energy security. As the global energy trend moves toward cleaner alternatives countries start to adapt their energy strategies. In this transition hydrogen is one of the energy sources with the potential to increase long-term energy security. Developing countries face challenges such as high energy import dependency rising industrial demand and the need for infrastructure modernization making hydrogen valleys one of the viable solutions since they integrate hydrogen production storage distribution and utilization at one facility. However establishing small-scale hydrogen valleys requires a comprehensive decision-making strategy consisting of technical financial environmental social and political factors while addressing uncertainties in the system. To systematically manage the process this study proposes a Z-numberbased fuzzy cognitive mapping approach which models the interdependencies among success factors supported by Z-number Decision-Making Trial and Evaluation Laboratory for structured prioritization with a multi-expert perspective. The results indicate that Financial Factors emerged as the most critical category with Government Incentives Infrastructure Investment Cost and Land Acquisition Cost ranking as the top three sub-success factors. Availability of Skilled Workforce and Regional Energy Supply followed in importance which demonstrates the importance of social and technical dimensions in the hydrogen valley development. These findings demonstrate the critical role of policy support infrastructure readiness and workforce availability in the design process. Sensitivity analyses are also conducted to present robustness of the given decisions for the analysis of the results. Based on the results and analyses possible implications based on the policy and practical dimensions are also discussed. By integrating fuzzy logic and Z-numbers the study aims to minimize loss of information enhances the analytical background for decision-making and provides a strategic roadmap for hydrogen valley development.
Investigating Ammonia as an Alternative Marine Fuel: A SWOT Analysis Using the Best–Worst Method
Oct 2025
Publication
The shipping industry remains heavily dependent on heavy fuel oils which account for approximately 77% of fuel consumption and contribute significantly to greenhouse gas (GHG) emissions. In line with the IMO’s decarbonization targets ammonia has emerged as a promising carbon-free alternative. This study evaluates the strategic viability of ammonia especially green production as a marine fuel through a hybrid SWOT–Best–Worst Method (BWM) analysis combining literature insights with expert judgment. Data were collected from 17 maritime professionals with an average of 15.7 years of experience ensuring robust sectoral representation and methodological consistency. The results highlight that opportunities hold the greatest weight (0.352) particularly the criteria “mandatory carbonfree by 2050” (O3:0.106) and “ammonia–hydrogen climate solution” (O2:0.080). Weaknesses rank second (0.270) with “higher toxicity than other marine fuels” (W5:0.077) as the most critical concern. Strengths (0.242) underscore ammonia’s advantage as a “carbonfree and sulfur-free fuel” (S1:0.078) while threats (0.137) remain less influential though “costly green ammonia” (T3:0.035) and “uncertainty of green ammonia” (T1:0.034) present notable risks. Overall the analysis suggests that regulatory imperatives and environmental benefits outweigh safety technical and economic challenges. Ammonia demonstrates strong potential to serve as viable marine fuel in achieving the maritime sector’s long-term decarbonization goals.
Design and Assessment of an Integrated PV-based Hydrogen Production Facility
Jun 2025
Publication
This study develops a photovoltaic (PV)-based hydrogen production system specifically designed for university campuses which is expected to lead in sustainability efforts. The proposed system aims to meet the electricity demand of a Hydrogen Research Center while supplying energy to an electric charging station and a hydrogen refueling station for battery-electric and fuel-cell electric vehicles operating within the campus. In this integrated system the electricity generation capacity of PV panels installed on the research center’s roof is determined and the surplus electricity after meeting the energy demand is allocated to cover the varying proportions needed for both electric charging station and hydrogen production system. The green hydrogen produced by the system is compressed to 100 350 and 700 bar with intermediate cooling stages where the heat generated at the compressor outlet is absorbed by a cooling fluid and repurposed in a condenser for domestic hot water production. A full thermodynamic analysis of this entirely renewable energy-powered system is conducted by considering a 9-hour daily operational period from 8:00 AM to 5:00 PM. The average incoming solar radiation is determined to be 484.63 W/m2 resulting in an annual electricity generation capacity of 494.86 MWh. Based on the assumptions and data considered the energy and exergy efficiencies of the proposed system are calculated as 17.71 % and 17.01 % respectively with an annual hydrogen production capacity of 3.642 tons. Various parametric studies are performed for varying solar intensity values and PV surface areas to investigate how the overall system capacities and efficiencies are affected. The results show that an integration of hydrogen production systems with solar energy offers significant advantages including mitigating intermittency issues found in standalone renewable systems reducing carbon emissions compared to fossil-based alternatives and enhancing the flexibility of energy systems.
Multi-Objective Optimal Energy Management Strategy for Grid-Interactive Hydrogen Refueling Stations in Rural Areas
Mar 2025
Publication
The transportation sector is a significant contributor to global carbon emissions thus necessitating a transition toward renewable energy sources (RESs) and electric vehicles (EVs). Among EV technologies fuel-cell EVs (FCEVs) offer distinct advantages in terms of refueling time and operational efficiency thus rendering them a promising solution for sustainable transportation. Nevertheless the integration of FCEVs in rural areas poses challenges due to the limited availability of refueling infrastructure and constraints in energy access. In order to address these challenges this study proposes a multi-objective energy management model for a hydrogen refueling station (HRS) integrated with RESs a battery storage system an electrolyzer (EL) a fuel cell (FC) and a hydrogen tank serving diverse FCEVs in rural areas. The model formulated using mixed-integer linear programming (MILP) optimizes station operations to maximize both cost and load factor performance. Additionally bi-directional trading with the power grid and hydrogen network enhances energy flexibility and grid stability enabling a more resilient and self-sufficient energy system. To the best of the authors’ knowledge this study is the first in the literature to present a multi-objective optimal management approach for grid-interactive renewablesupported HRSs serving hydrogen-powered vehicles in rural areas. The simulation results demonstrate that RES integration improves economic feasibility by reducing costs and increasing financial gains while maximizing the load factor enhances efficiency cost-driven strategies that may impact stability. The impact of the EL on cost is more significant while RES capacity has a relatively smaller effect on cost. However its influence on the load factor is substantial. The optimization of RES-supported hydrogen production has been demonstrated to reduce external dependency thereby enabling surplus trading and increasing financial gains to the tune of USD 587.83. Furthermore the system enhances sustainability by eliminating gasoline consumption and significantly reducing carbon emissions thus supporting the transition to a cleaner and more efficient transportation ecosystem.
Development and Validation of an All-metal Scroll Pump for PEM Fuel Cell Hydrogen Recirculation
Oct 2025
Publication
Hydrogen recirculation is essential for maintaining fuel efficiency and durability in Proton Exchange Membrane Fuel Cell (PEMFC) systems particularly in automotive range extender applications. This study presents the design simulation and experimental validation of a dry all-metal scroll pump developed for hydrogen recirculation in a 5 kW PEMFC system. The pump operates without oil or polymer seals offering long-term compatibility with dry hydrogen. Two prototypes were fabricated: SP1 incorporating PTFE-bronze tip seals and SP2 a fully metallic seal-free design. A fully deterministic one-dimensional (1D) model was developed to predict thermodynamic performance including leakage and heat transfer effects and validated against experimental results. SP1 achieved higher flow rates due to reduced axial leakage but experienced elevated friction and temperature. In contrast SP2 provided improved thermal stability and lower friction with slightly reduced flow performance. The pump demonstrated a maximum flow rate of 50 l/min and an isentropic efficiency of 82.2 % at 2.5 bara outlet pressure. Simulated performance showed strong agreement with experimental results with deviations under 5 %. The findings highlight the critical role of thermal management and manufacturing tolerances in dry scroll pump design. The seal-free liquid-cooled scroll architecture presents a promising solution for compact oil-free hydrogen recirculation in low-power fuel cell systems.
Innovative Anode Porous Transport Layers for Polymer Elecrolyte Membrane Water Electrolyzers
Sep 2025
Publication
Polymer Electrolyte Membrane Water Electrolyzers (PEMWEs) attract significant attention for producing green hydrogen. However their widespread application remains hindered by high production costs. This study develops cost-effective and high-performance 3D-printed gyroid structures as porous transport layers (PTLs) for the anode of PEMWEs. Experimental results demonstrate that the PTL’s structure critically influences its performance which depends on its design. Among the four gyroid structures evaluated the G10 electrode exhibited the best performance in electrochemical tests conducted under various ex-situ conditions simulating real-world operation. Furthermore the 3D-printed G10 electrode undergoes Pt coating and is compared with commercially available PTLs. The commercial PTL (C3) shows a current density of 138.488 mA cm−2 whereas the G10-1.00 μm Pt electrode achieves a significantly higher current density of 584.692 mA cm−2 at 1.9V. The gyroid structure is a promising avenue for developing high-energy and low-cost PEMWEs and other related technologies.
Metal–Organic Frameworks for Seawater Electrolysis and Hydrogen Production: A Review
Oct 2025
Publication
Electrolysis utilizing renewable electricity is an environmentally friendly non-polluting and sustainable method of hydrogen production. Seawater is the most desirable and inexpensive electrolyte for this process to achieve commercial acceptance compared to competing hydrogen production technologies. We reviewed metal–organic frameworks as possible electrocatalysts for hydrogen production by seawater electrolysis. Metal–organic frameworks are interesting for seawater electrolysis due to their large surface area tunable permeability and ease of functional processing which makes them extremely suitable for obtaining modifiable electrode structures. Here we discussed the development of metal– organic framework-based electrocatalysts as multifunctional materials with applications for alkaline PEM and direct seawater electrolysis for hydrogen production. Their advantages and disadvantages were examined in search of a pathway to a successful and sustainable technology for developing electrode materials to produce hydrogen from seawater.
Fractal Fuzzy‑Based Multi‑criteria Assessment of Sustainability in Rare Earth Use for Hydrogen Storage
Aug 2025
Publication
The use of rare earth elements in hydrogen storage processes offers significant advantages in terms of increasing technological efficiency and ensuring system security. However this process also creates some serious problems in terms of environmental and economic sustainability. It is necessary to determine the most critical indicators affecting the sustainable use of these elements. Studies on this subject in the literature are quite limited and this may lead to wrong investment decisions. The main purpose of this study is to determine the most important indicators to increase the sustainable use of rare earth elements in hydrogen storage processes. An original decision-making model in which Siamese network logarithmic percentage-change driven objective weighting (LOPCOW) fractal fuzzy numbers and weighted influence super matrix with precedence (WISP) approaches are integrated in the study. This study provides an original contribution to the literature by identifying the most critical indicators affecting the sustainable use of rare earths in hydrogen storage processes by presenting an innovative model. Fractal structures such as Koch Snowflake Cantor Dust and Sierpinski Triangle can model complex uncertainties more successfully. Fractal structures are particularly effective in modeling linguistic fuzziness because their recursive nature closely mirrors the layered and imprecise way humans often express subjective judgments. Unlike linear fuzzy sets fractals can capture the patterns of ambiguity found in expert evaluations. Hydrogen storage capacity and government supports are determined as the most vital criteria affecting sustainability in rare earth use.
Thermodynamics Analysis of Generation of Green Hydrogen and Methanol through Carbon Dioxide Capture
Oct 2025
Publication
This extensive study delves into analyzing carbon dioxide (CO2)-capturing green hydrogen plant exploring its operation using multiple electrolysis techniques and examining their efficiency and impact on environment. The solar energy is used for the electrolysis to make hydrogen. Emitted CO2 from thermal power plants integrate with green hydrogen and produces methanol. It is a process crucial for mitigating environmental damage and fostering sustainable energy practices. The findings demonstrated that solid oxide electrolysis is the most effective process by which hydrogen can be produced with significant rate of 90 % efficiency. Moreover proton exchange membrane (PEM) becomes a viable and common method with an 80 % efficiency whereas the alkaline electrolysis has a moderate level of 63 % efficiency. Additionally it was noted that the importance of seasonal fluctuations where the capturing of CO2 is maximum in summer months and less in the winter is an important factor to consider in order to maximize the working of the plant and the allocation of resources.
Experimental Thermal and Environmental Impact Performance Evaluations of Hydrogen-enriched Fuels for Power Generation
Oct 2025
Publication
The transition to a low-carbon energy future requires a multi-faceted approach including the enhancement of existing power generation technologies. This study provides a comprehensive experimental evaluation of hydrogen enrichment as a strategy to improve the performance and reduce the emissions of a power generator. A 3.65 kW power generator that is equipped with spark-ignition engine is systematically tested with five distinct base fuels: gasoline propane methane ethanol and methanol. Each fuel is volumetrically blended with pure hydrogen in ratios of 5 % 10 % 15 % and 20 % using a custom-developed dual-fuel carburetor. The key parameters including exhaust emissions (CO2 CO HC NOx) cylinder exit temperature electrical power output and thermodynamic efficiencies (energy and exergy) are meticulously measured and analyzed. The results reveal that hydrogen enrichment is a powerful tool for decarbonization consistently reducing carbon-based emissions across all fuels. At a 20 % hydrogen blend CO2 emissions are reduced by 22–31 % CO emissions by 39–60 % and HC emissions by 21–60 %. This environmental benefit however is accompanied by a critical trade-off: a severe increase in NOx emissions which rose by 200–420 % due to significantly elevated combustion temperatures. The power outputs are increased by 2–16 % with hydrogen addition enabling lower-energy–density fuels like methane and propane to achieve performance parity with gasoline. Thermodynamic analysis confirms these gains with energy efficiency showing marked improvement particularly for methane which has increased from 42.0 % to 49.9 %. While hydrogen enrichment presents a viable pathway for enhancing engine performance and reducing the carbon emissions of power generators the profound increase in NOx necessitates the integration of advanced control and after-treatment systems for its practical and environmentally responsible deployment.
Techno-Economic Optimization of a Hybrid Renewable Energy System with Seawater-Based Pumped Hydro, Hydrogen, and Battery Storage for a Coastal Hotel
Oct 2025
Publication
This study presents the design and techno-economic optimization of a hybrid renewable energy system (HRES) for a coastal hotel in Manavgat Türkiye. The system integrates photovoltaic (PV) panels wind turbines (WT) pumped hydro storage (PHS) hydrogen storage (electrolyzer tank and fuel cell) batteries a fuel cell-based combined heat and power (CHP) unit and a boiler to meet both electrical and thermal demands. Within this broader optimization framework six optimal configurations emerged representing gridconnected and standalone operation modes. Optimization was performed in HOMER Pro to minimize net present cost (NPC) under strict reliability (0% unmet load) and renewable energy fraction (REF > 75%) constraints. The grid-connected PHS–PV–WT configuration achieved the lowest NPC ($1.33 million) and COE ($0.153/kWh) with a renewable fraction of ~96% and limited excess generation (~21%). Off-grid PHS-based and PHS–hydrogen configurations showed competitive performance with slightly higher costs. Hydrogen integration additionally provides complementary storage pathways coordinated operation waste heat utilization and redundancy under component unavailability. Battery-only systems without PHS or hydrogen storage resulted in 37–39% higher capital costs and ~53% higher COE confirming the economic advantage of long-duration PHS. Sensitivity analyses indicate that real discount rate variations notably affect NPC and COE particularly for battery-only systems. Component cost sensitivity highlights PV and WT as dominant cost drivers while PHS stabilizes system economics and the hydrogen subsystem contributes minimally due to its small scale. Overall these results confirm the techno-economic and environmental benefits of combining seawater-based PHS with optional hydrogen and battery storage for sustainable hotel-scale applications.
No more items...