United States
The Prospects of Hydrogen in Achieving Net Zero Emissions by 2050: A Critical Review
May 2023
Publication
Hydrogen (H2) usage was 90 metric tonnes (Mt) in 2020 almost entirely for industrial and refining uses and generated almost completely from fossil fuels leading to nearly 900 Mt of carbon dioxide emissions. However there has been significant growth of H2 in recent years. Electrolysers' total capacity which are required to generate H2 from electricity has multiplied in the past years reaching more than 300 MW through 2021. Approximately 350 projects reportedly under construction could push total capacity to 54 GW by the year 2030. Some other 40 projects totalling output of more than 35 GW are in the planning phase. If each of these projects is completed global H2 production from electrolysers could exceed 8 Mt by 2030. It's an opportunity to take advantage of H2S prospects to be a crucial component of a clean safe and cost-effective sustainable future. This paper assesses the situation regarding H2 at the moment and provides recommendations for its potential future advancement. The study reveals that clean H2 is experiencing significant unparalleled commercial and political force with the amount of laws and projects all over the globe growing quickly. The paper concludes that in order to make H2 more widely employed it is crucial to significantly increase innovations and reduce costs. The practical and implementable suggestions provided to industries and governments will allow them to fully capitalise on this growing momentum.
Design for Reliability and Safety: Challenges and Opportunities in Hydrogen Mobility Assets
Sep 2023
Publication
Safety and reliability are important performance attributes of any engineered system where humanmachine interactions are present. However they are usually approached as afterthoughts or in some cases unintended consequences of the system design and development process that must be addressed and verified in subsequent design stages. In plain words safety and reliability are often seen as constraints that add layers of complexity and extra costs to the minimum functional system of interest. No longer. Shell Hydrogen is embedding the Design for Reliability and Safety approach to engineer our products and assets in such a way that safety and reliability are at the core of a concurrent engineering process throughout the system lifecycle. This has been achieved in practice by leveraging systems reliability and safety engineering methods along with the experience and expertise of Shell Hydrogen original equipment manufacturers and system integrators in designing building and operating hydrogen assets for mobility applications.<br/>The challenges in implementing this approach are many ranging from access to historical data on equipment and component safety and reliability performance to lack of standardization in the industry when dealing with hydrogen related hazards. In this paper we will describe the approach in more detail some of our early successes and failures during deployment and the continual improvement journey that lies ahead.
Everything About Hydrogen Podcast: Scaling Clean Hydrogen Production
Dec 2021
Publication
Today we are joined by our good friends from Enapter. The company is a leader in the clean hydrogen sector focused on AEM electrolyzer technology and innovative software solutions that make it possible to rapidly deploy and scale hydrogen production assets. For those who follow the hydrogen sector regularly it’s been hard not to hear Enapter-related news in 2021 and its impressive trajectory as they have gone public announced the plans for a brand new production facility in Germany (on which they have now begun construction) and most recently the announcement that Enapter was selected as the winner of the prestigious Earthshot prize. To do that we are absolutely delighted to have with us all the way from his home base in Thailand Thomas Chrometzka Chief Strategy Officer at Enapter and one of the people that we enjoy having on the show so much that we have brought him back again to fill us in on what he and Enapter are up to and what they have planned for the future of hydrogen.
The podcast can be found on their website
The podcast can be found on their website
A Review of the Status of Fossil and Renewable Energies in Southeast Asia and Its Implications on the Decarbonization of ASEAN
Mar 2022
Publication
The ten nations of Southeast Asia collectively known as ASEAN emitted 1.65 Gtpa CO2 in 2020 and are among the most vulnerable nations to climate change which is partially caused by anthropogenic CO2 emission. This paper analyzes the history of ASEAN energy consumption and CO2 emission from both fossil and renewable energies in the last two decades. The results show that ASEAN’s renewable energies resources range from low to moderate are unevenly distributed geographically and contributed to only 20% of total primary energy consumption (TPEC) in 2015. The dominant forms of renewable energies are hydropower solar photovoltaic and bioenergy. However both hydropower and bioenergy have substantial sustainability issues. Fossil energies depend heavily on coal and oil and contribute to 80% of TPEC. More importantly renewable energies’ contribution to TPEC has been decreasing in the last two decades despite the increasing installation capacity. This suggests that the current rate of the addition of renewable energy capacity is inadequate to allow ASEAN to reach net-zero by 2050. Therefore fossil energies will continue to be an important part of ASEAN’s energy mix. More tools such as carbon capture and storage (CCS) and hydrogen will be needed for decarbonization. CCS will be needed to decarbonize ASEAN’s fossil power and industrial plants while blue hydrogen will be needed to decarbonize hard-to-decarbonize industrial plants. Based on recent research into regional CO2 source-sink mapping this paper proposes six large-scale CCS projects in four countries which can mitigate up to 300 Mtpa CO2 . Furthermore this paper identifies common pathways for ASEAN decarbonization and their policy implications.
Everything About Hydrogen Podcast: Back to a Hydrogen Future?
Mar 2020
Publication
On this weeks episode the team are talking all things hydrogen with Mark Neller Director at Arup. On the show we discuss the UK’s Hydrogen4Heat program where Arup has been leading the UK government’s work on the safety and practical considerations that are necessary to examine whether hydrogen could be a serious solutions for decarbonising UK residential commercial and industry heat. We also discuss the Nikola Badger the need for system wide planning when considering decarbonisation pathways for heat. All this and more on the show!
The podcast can be found on their website
The podcast can be found on their website
Effect of Au Plasmonic Material on Poly M-Toluidine for Photoelectrochemical Hydrogen Generation from Sewage Water
Feb 2022
Publication
This study provides H2 gas as a renewable energy source from sewage water splitting reaction using a PMT/Au photocathode. So this study has a dual benefit for hydrogen generation; at the same time it removes the contaminations of sewage water. The preparation of the PMT is carried out through the polymerization process from an acid medium. Then the Au sputter was carried out using the sputter device under different times (1 and 2 min) for PMT/Au-1 min and PMT/Au-2min respectively. The complete analyses confirm the chemical structure such as XRD FTIR HNMR SEM and Vis-UV optical analyses. The prepared electrode PMT/Au is used for the hydrogen generation reaction using Na2S2O3 or sewage water as an electrolyte. The PMT crystalline size is 15 nm. The incident photon to current efficiency (IPCE) efficiency increases from 2.3 to 3.6% (at 390 nm) and the number of H2 moles increases from 8.4 to 33.1 mmol h−1 cm−2 for using Na2S2O3 and sewage water as electrolyte respectively. Moreover all the thermodynamic parameters such as activation energy (Ea) enthalpy (∆H*) and entropy (∆S*) were calculated; additionally a simple mechanism is mentioned for the water-splitting reaction.
Hydrogen is Essential for Sustainability
Nov 2018
Publication
Sustainable energy conversion requires zero emissions of greenhouse gases and criteria pollutants using primary energy sources that the earth naturally replenishes quickly like renewable resources. Solar and wind power conversion technologies have become cost effective recently but challenges remain to manage electrical grid dynamics and to meet end-use requirements for energy dense fuels and chemicals. Renewable hydrogen provides the best opportunity for a zero emissions fuel and is the best feedstock for production of zero emission liquid fuels and some chemical and heat end-uses. Renewable hydrogen can be made at very high efficiency using electrolysis systems that are dynamically operated to complement renewable wind and solar power dynamics. Hydrogen can be stored within the existing natural gas system to provide low cost massive storage capacity that (1) could be sufficient to enable a 100% zero emissions grid; (2) has sufficient energy density for end-uses including heavy duty transport; (3) is a building block for zero emissions fertilizer and chemicals; and (4) enables sustainable primary energy in all sectors of the economy.
Hydrogen Blending in Gas Pipeline Networks—A Review
May 2022
Publication
Replacing fossil fuels with non-carbon fuels is an important step towards reaching the ultimate goal of carbon neutrality. Instead of moving directly from the current natural gas energy systems to pure hydrogen an incremental blending of hydrogen with natural gas could provide a seamless transition and minimize disruptions in power and heating source distribution to the public. Academic institutions industry and governments globally are supporting research development and deployment of hydrogen blending projects such as HyDeploy GRHYD THyGA HyBlend and others which are all seeking to develop efficient pathways to meet the carbon reduction goal in coming decades. There is an understanding that successful commercialization of hydrogen blending requires both scientific advances and favorable techno-economic analysis. Ongoing studies are focused on understanding how the properties of methane-hydrogen mixtures such as density viscosity phase interactions and energy densities impact large-scale transportation via pipeline networks and enduse applications such as in modified engines oven burners boilers stoves and fuel cells. The advantages of hydrogen as a non-carbon energy carrier need to be balanced with safety concerns of blended gas during transport such as overpressure and leakage in pipelines. While studies on the short-term hydrogen embrittlement effect have shown essentially no degradation in the metal tensile strength of pipelines the long-term hydrogen embrittlement effect on pipelines is still the focus of research in other studies. Furthermore pressure reduction is one of the drawbacks that hydrogen blending brings to the cost dynamics of blended gas transport. Hence techno-economic models are also being developed to understand the energy transportation efficiency and to estimate the true cost of delivery of hydrogen blended natural gas as we move to decarbonize our energy systems. This review captures key large-scale efforts around the world that are designed to increase the confidence for a global transition to methane-hydrogen gas blends as a precursor to the adoption of a hydrogen economy by 2050.
Hydrogen Production in the Swedish Power Sector: Considering Operational Volatilities and Long-term Uncertainties
Nov 2020
Publication
With more renewables on the Swedish electricity market while decommissioning nuclear power plants electricity supply increasingly fluctuates and electricity prices are more volatile. There is hence a need for securing the electricity supply before energy storage solutions become widespread. Electricity price fluctuations moreover affect operating income of nuclear power plants due to their inherent operational inflexibility. Since the anticipated new applications of hydrogen in fuel cell vehicles and steel production producing hydrogen has become a potential source of income particularly when there is a surplus supply of electricity at low prices. The feasibility of investing in hydrogen production was investigated in a nuclear power plant applying Swedish energy policy as background. The analysis applies a system dynamics approach incorporating the stochastic feature of electricity supply and prices. The study revealed that hydrogen production brings alternative opportunities for large-scale electricity production facilities in Sweden. Factors such as hydrogen price will be influential and require in-depth investigation. This study provides guidelines for power sector policymakers and managers who plan to engage in hydrogen production for industrial applications. Although this study was focused upon nuclear power sources it can be extended to hydrogen production from renewable energy sources such as wind and solar.
Low Carbon Scenario Analysis of a Hydrogen-Based Energy Transition for On-Road Transportation in California
Nov 2021
Publication
Fuel cell electric vehicles (FCEV) are emerging as one of the prominent zero emission vehicle technologies. This study follows a deterministic modeling approach to project two scenarios of FCEV adoption and the resulting hydrogen demand (low and high) up to 2050 in California using a transportation transition model. The study then estimates the number of hydrogen production and refueling facilities required to meet demand. The impact of system scale-up and learning rates on hydrogen price is evaluated using standalone supply chain models: H2A HDSAM HRSAM and HDRSAM. A sensitivity analysis explores key factors that affect hydrogen prices. In the high scenario light and heavy-duty fuel cell vehicle stocks reach 12.5 million and 1 million by 2050 respectively. The resulting annual hydrogen demand is 3.9 billion kg making hydrogen the dominant transportation fuel. Satisfying such high future demands will require rapid increases in infrastructure investments starting now but especially after 2030 when there is an exponential increase in the number of production plants and refueling stations. In the long term electrolytic hydrogen delivered using dedicated hydrogen pipelines to larger stations offers substantial cost savings. Feedstock prices size of the hydrogen market and station utilization are the prominent parameters that affect hydrogen price.
Everything About Hydrogen Podcast: Storage for the Future!
Jan 2022
Publication
For our first episode of 2022 we invited Jørn Helge Dahl Global Director of Sales&Marketing at Hexagon Purus to talk about hydrogen storage with the EAH podcast and to explain the types of solutions available today Hexagon's history and plans for the future alongside some commentary on US hydrogen strategy from the gang.
The podcast can be found on their website
The podcast can be found on their website
Everything About Hydrogen Podcast: Changing the Game in Hydrogen Compression
Oct 2021
Publication
In the second episode of EAH's Season 3 Patrick Andrew and Chris sit down with Maria Fennis CEO of HyET. HyET Hydrogen is a leading SME in the field of electrochemical hydrogen compression founded in 2008. HyET has introduced the first commercially viable Electrochemical Hydrogen Compressor (EHPC) the HCS 100 in 2017. HyET enters partnerships with key stakeholders to develop products with a focus on application. Maria is a leading voice in the compression arena and it is a pleasure to have her on the show!
The podcast can be found on their website
The podcast can be found on their website
Everything About Hydrogen Podcast: A New Hope for Hydrogen?
Apr 2020
Publication
On this weeks episode the team discuss the Hydrogen Council the global stakeholder forum that has been at the forefront of efforts to advance the role of hydrogen and fuel cell technologies globally. We are excited to have as our guests Pierre-Etienne Franc Vice President for the Hydrogen Energy World Business Unit at Air Liquide and Stephan Herbst General Manager at Toyota Motor Europe. On the show we discuss why Air Liquide and Toyota decided to engage with the Council its strategy vision and perspective on the role that hydrogen can play in the energy transition and how companies can work with policymakers to enable this process. All this and more on the show!
The podcast can be found on their website
The podcast can be found on their website
Everything About Hydrogen Podcast: Could Electrolysers Replicate Moore's Law?
Apr 2020
Publication
On this weeks episode the team are talking all things hydrogen with Sebastian-Justus Schmidt Chairman of Enapter and Thomas Chrometzka Head of Strategy at Enapter. On the show we discuss Enapter’s Anion Exchange Membrane (AEM) electrolyser and why Enapter believe that their modular electrolyser approach will revolutionise the cost of green hydrogen. We also discuss the wide array of use cases and sectors that Enapter are already working with to provide their solution as well as their view on where the current barriers exist for the hydrogen market. All this and more on the show!
The podcast can be found on their website
The podcast can be found on their website
Everything About Hydrogen Podcast: Moving at the Speed of Hydrogen
Nov 2020
Publication
We spend a lot of time on the show talking about the interesting use cases and potential applications of hydrogen technologies as a means to decarbonize high-emissions sectors and that is the point! However moving hydrogen around the world (e.g. to remote areas without the capacity to produce it locally) presents a number of complexities and challenges that are unique to hydrogen itself or for which there are no traditionally established technologies to do so. On this episode the EAH team has a fascinating chat with Dr. Daniel Teichmann CEO and founder of Hydrogenious to learn more about liquid organic hydrogen carriers (LOHCs) and how they can help companies overcome some of the major hurdles that moving hydrogen around the globe presents.
The podcast can be found on their website
The podcast can be found on their website
Everything About Hydrogen Podcast: Masters of Scale: Mobilizing the Mobility Sector (Around Hydrogen Fuel Cells)
Nov 2020
Publication
We talk a lot on the EAH podcast series about where hydrogen fuel cell electric vehicles (FCEVs) fit into the overall zero emission vehicle (ZEV) ecosystem. From personal passenger vehicles and the family car to commercial trucking and public transportation fleets and everything in between. Different vehicles and different use cases call for different capabilities and that is what makes the future of decarbonized transportation co interesting.
The podcast can be found on their website
The podcast can be found on their website
Everything About Hydrogen Podcast: Commercial Trucking at the Speed of Hydrogen
Jun 2021
Publication
The transportation and mobility sector is vast complex unwieldy and most excitingly an obvious area of focus for hydrogen fuel cell technology applications. Hydrogen FCEVs allow vehicles to run in a wide range of environments with zero tailpipe emissions and can do so without the need for extremely heavy battery cells and can be refueled in the same amount of time as a modern ICE vehicle. This makes hydrogen FCEVs an ideal fit for the heavy commercial transportation industry and is why Hyzon Motors has jumped at the opportunity to revolutionize the industry. The company has grabbed headlines all over the world with its ambitious plans for rolling out its trucks in the United States and other major markets. It has also made news with its recent announcement that the company is going public and has attracted significant investor interest. The EAH team is joined on this episode by Hyzon's CEO Craig Knight to talk about how the company is tackling some of the most significant challenges in decarbonizing transport and how it can make trucking a zero-emission operation.
The podcast can be found on their website
The podcast can be found on their website
Alternative-energy-vehicles Deployment Delivers Climate, Air Quality, and Health Co-benefits when Coupled with Decarbonizing Power Generation in China
Aug 2021
Publication
China is the world’s largest carbon emitter and suffers from severe air pollution which results in approximately one million premature deaths/year. Alternative energy vehicles (AEVs) (electric hydrogen fuel cell and natural gas vehicles) can reduce carbon emissions and improve air quality. However climate air quality and health benefits of AEVs powered with deeply decarbonized power generation are poorly quantified. Here we quantitatively estimate the air quality health carbon emission and economic benefits of replacing internal combustion engine vehicles with various AEVs. We find co-benefits increase dramatically as the electricity grid decarbonizes and hydrogen is produced from non-fossil fuels. Relative to 2015 a conversion to AEVs using largely non-fossil power can reduce air pollution and associated premature mortalities and years of life lost by 329000 persons/year and 1611000 life years/year. Thus maximizing climate air quality and health benefits of AEV deployment in China requires rapid decarbonization of the power system.
The Role of Natural Gas and its Infrastructure in Mitigating Greenhouse Gas Emissions, Improving Regional Air Quality, and Renewable Resource Integration
Nov 2017
Publication
The pursuit of future energy systems that can meet electricity demands while supporting the attainment of societal environment goals including mitigating climate change and reducing pollution in the air has led to questions regarding the viability of continued use of natural gas. Natural gas use particularly for electricity generation has increased in recent years due to enhanced resource availability from non-traditional reserves and pressure to reduce greenhouse gasses (GHG) from higher-emitting sources including coal generation. While lower than coal emissions current natural gas power generation strategies primarily utilize combustion with higher emissions of GHG and criteria pollutants than other low-carbon generation options including renewable resources. Furthermore emissions from life cycle stages of natural gas production and distribution can have additional detrimental GHG and air quality (AQ) impacts. On the other hand natural gas power generation can play an important role in supporting renewable resource integration by (1) providing essential load balancing services and (2) supporting the use of gaseous renewable fuels through the existing infrastructure of the natural gas system. Additionally advanced technologies and strategies including fuel cells and combined cooling heating and power (CCHP) systems can facilitate natural gas generation with low emissions and high efficiencies. Thus the role of natural gas generation in the context of GHG mitigation and AQ improvement is complex and multi-faceted requiring consideration of more than simple quantification of total or net emissions. If appropriately constructed and managed natural gas generation could support and advance sustainable and renewable energy. In this paper a review of the literature regarding emissions from natural gas with a focus on power generation is conducted and discussed in the context of GHG and AQ impacts. In addition a pathway forward is proposed for natural gas generation and infrastructure to maximize environmental benefits and support renewable resources in the attainment of emission reductions.
Advances in Hydrogen, Carbon Dioxide, and Hydrocarbon Gas Sensor Technology Using GaN and ZnO-Based Devices
Jun 2009
Publication
In this paper we review our recent results in developing gas sensors for hydrogen using various device structures including ZnO nanowires and GaN High Electron Mobility Transistors (HEMTs). ZnO nanowires are particularly interesting because they have a large surface area to volume ratio which will improve sensitivity and because they operate at low current levels will have low power requirements in a sensor module. GaN-based devices offer the advantage of the HEMT structure high temperature operation and simple integration with existing fabrication technology and sensing systems. Improvements in sensitivity recoverability and reliability are presented. Also reported are demonstrations of detection of other gases including CO2 and C2H4 using functionalized GaN HEMTs. This is critical for the development of lab-on-a-chip type systems and can provide a significant advance towards a market-ready sensor application.
No more items...