United States
U.S. National Clean Hydrogen Strategy and Roadmap
Jun 2023
Publication
The U.S. National Clean Hydrogen Strategy and Roadmap explores opportunities for clean hydrogen to contribute to national decarbonization goals across multiple sectors of the economy. It provides a snapshot of hydrogen production transport storage and use in the United States today and presents a strategic framework for achieving large-scale production and use of clean hydrogen examining scenarios for 2030 2040 and 2050.
The Strategy and Roadmap also identifies needs for collaboration among federal government agencies industry academia national laboratories state local and Tribal communities environmental and justice communities labor unions and numerous stakeholder groups to accelerate progress and market liftoff. This roadmap establishes concrete targets market-driven metrics and tangible actions to measure success across sectors.
The Strategy and Roadmap responds to legislative language set forth in section 40314 of the Infrastructure Investment and Jobs Act (Public Law 117-58) also known as the Bipartisan Infrastructure Law (BIL). This document was posted for in draft form for public comment in September 2022 and the final version of the report was informed by stakeholder feedback further analysis on market liftoff as well as engagement across several federal agencies and the White House Climate Policy Office. There will also be future opportunities for stakeholder feedback as the report will be updated at least every three years as required by the BIL.
The report can be found on their website.
The Strategy and Roadmap also identifies needs for collaboration among federal government agencies industry academia national laboratories state local and Tribal communities environmental and justice communities labor unions and numerous stakeholder groups to accelerate progress and market liftoff. This roadmap establishes concrete targets market-driven metrics and tangible actions to measure success across sectors.
The Strategy and Roadmap responds to legislative language set forth in section 40314 of the Infrastructure Investment and Jobs Act (Public Law 117-58) also known as the Bipartisan Infrastructure Law (BIL). This document was posted for in draft form for public comment in September 2022 and the final version of the report was informed by stakeholder feedback further analysis on market liftoff as well as engagement across several federal agencies and the White House Climate Policy Office. There will also be future opportunities for stakeholder feedback as the report will be updated at least every three years as required by the BIL.
The report can be found on their website.
Market-based Asset Valuation of Hydrogen Geological Storage
Jul 2023
Publication
Because of hydrogen's low energy density hydrogen storage is a critical component of the hydrogen economy particularly when large-scale and flexible hydrogen utilization is required. There is a sense of urgency to develop hydrogen geological storage projects to support large-scale yet flexible hydrogen utilization. This study aims to answer questions not yet resolved in the research literature discussing the valuation of hydrogen geological storage options for commercial development. This study establishes a net present value (NPV) evaluation framework for geological hydrogen storage that integrates the updated techno-economic analysis and market-based operations. The capital asset pricing model (CAPM) and the related finance theories are applied to determine the risk-adjusted discount rate in building the NPV evaluation framework. The NPV framework has been applied to two geological hydrogen storage projects a single-turn storage serving downstream transportation seasonal demand versus a multiturn storage as part of an integrated renewables-based hydrogen energy system providing peak electric load. From the NPV framework both projects have positive NPVs $46 560 632 and $12 457 546 respectively and International Rate of Return (IRR) values which are higher than the costs of capital. The NPV framework is also applied to the sensitivity analysis and shows that the hydrogen price spread between withdrawal and injection prices site development and well costs are the top three factors that impact both NPV and IRR the most for both projects. The established NPV framework can be used for project risk management by discovering the key cost drivers for the storage assets.
Experimental Comparison of Hydrogen Refueling with Directly Pressurized vs. Cascade Method
Aug 2023
Publication
This paper presents a comparative analysis of two hydrogen station configurations during the refueling process: the conventional “directly pressurized refueling process” and the innovative “cascade refueling process.” The objective of the cascade process is to refuel vehicles without the need for booster compressors. The experiments were conducted at the Hydrogen Research and Fueling Facility located at California State University Los Angeles. In the cascade refueling process the facility buffer tanks were utilized as high-pressure storage enabling the refueling operation. Three different scenarios were tested: one involving the cascade refueling process and two involving compressor-driven refueling processes. On average each refueling event delivered 1.6 kg of hydrogen. Although the cascade refueling process using the high-pressure buffer tanks did not achieve the pressure target it resulted in a notable improvement in the nozzle outlet temperature trend reducing it by approximately 8 ◦C. Moreover the overall hydrogen chiller load for the two directly pressurized refuelings was 66 Wh/kg and 62 Wh/kg respectively whereas the cascading process only required 55 Wh/kg. This represents a 20% and 12% reduction in energy consumption compared to the scenarios involving booster compressors during fueling. The observed refueling range of 150–350 bar showed that the cascade process consistently required 12–20% less energy for hydrogen chilling. Additionally the nozzle outlet temperature demonstrated an approximate 8 ◦C improvement within this pressure range. These findings indicate that further improvements can be expected in the high-pressure region specifically above 350 bar. This research suggests the potential for significant improvements in the high-pressure range emphasizing the viability of the cascade refueling process as a promising alternative to the direct compression approach.
Hydrogen Liquefaction: A Review of the Fundamental Physics, Engineering Practice and Future Opportunities
Apr 2022
Publication
Hydrogen is emerging as one of the most promising energy carriers for a decarbonised global energy system. Transportation and storage of hydrogen are critical to its large-scale adoption and to these ends liquid hydrogen is being widely considered. The liquefaction and storage processes must however be both safe and efficient for liquid hydrogen to be viable as an energy carrier. Identifying the most promising liquefaction processes and associated transport and storage technologies is therefore crucial; these need to be considered in terms of a range of interconnected parameters ranging from energy consumption and appropriate materials usage to considerations of unique liquid-hydrogen physics (in the form of ortho–para hydrogen conversion) and boil-off gas handling. This study presents the current state of liquid hydrogen technology across the entire value chain whilst detailing both the relevant underpinning science (e.g. the quantum behaviour of hydrogen at cryogenic temperatures) and current liquefaction process routes including relevant unit operation design and efficiency. Cognisant of the challenges associated with a projected hydrogen liquefaction plant capacity scale-up from the current 32 tonnes per day to greater than 100 tonnes per day to meet projected hydrogen demand this study also reflects on the next-generation of liquid-hydrogen technologies and the scientific research and development priorities needed to enable them.
A Comprehensive Resilience Assessment Framework for Hydrogen Energy Infrastructure Development
Jun 2023
Publication
In recent years sustainable development has become a challenge for many societies due to natural or other disruptive events which have disrupted economic environmental and energy infrastructure growth. Developing hydrogen energy infrastructure is crucial for sustainable development because of its numerous benefits over conventional energy sources. However the complexity of hydrogen energy infrastructure including production utilization and storage stages requires accounting for potential vulnerabilities. Therefore resilience needs to be considered along with sustainable development. This paper proposes a decision-making framework to evaluate the resilience of hydrogen energy infrastructure by integrating resilience indicators and sustainability contributing factors. A holistic taxonomy of resilience performance is first developed followed by a qualitative resilience assessment framework using a novel Intuitionistic fuzzy Weighted Influence Nonlinear Gauge System (IFWINGS). The results highlighted that Regulation and legislation Government preparation and Crisis response budget are the most critical resilience indicators in the understudy hydrogen energy infrastructure. A comparative case study demonstrates the practicality capability and effectiveness of the proposed approach. The results suggest that the proposed model can be used for resilience assessment in other areas.
Linking Cost Decline and Demand Surge in the Hydrogen Market: A Case Study in China
Jun 2023
Publication
Hydrogen is crucial in achieving global energy transition and carbon neutrality goals. Existing market estimates typically presume linear or exponential growth but fail to consider how market demand responds to the declining cost of underlying technologies. To address this this study utilizes a learning curve model to project the cost of electrolyzers and its subsequent impact on hydrogen market aligning with a premise that the market demand is proportional to the cost of hydrogen. In a case study of China’s hydrogen market projecting from 2020 to 2060 we observed substantial differences in market evolution compared to exponential growth scenarios. Contrary to exponential growth scenarios China’s hydrogen market experiences faster growth during the 2020–2040 period rather than later. Such differences underscore the necessity for proactive strategic planning in emerging technology markets particularly for those experiencing rapid cost decline such as hydrogen. The framework can also be extended to other markets by using local data providing valuable insights to investors policymakers and developers engaged in the hydrogen market.
Preliminary Study for the Commercialization of a Electrochemical Hydrogen Compressor
Mar 2023
Publication
A global energy shift to a carbon‐neutral society requires clean energy. Hydrogen can accelerate the process of expanding clean and renewable energy sources. However conventional hydrogen compression and storage technology still suffers from inefficiencies high costs and safety concerns. An electrochemical hydrogen compressor (EHC) is a device similar in structure to a water electrolyzer. Its most significant advantage is that it can accomplish hydrogen separation and compression at the same time. With no mechanical motion and low energy consumption the EHC is the key to future hydrogen compression and purification technology breakthroughs. In this study the compression performance efficiency and other related parameters of EHC are investigated through experiments and simulation calculations. The experimental results show that under the same experimental conditions increasing the supply voltage and the pressure in the anode chamber can improve the reaction rate of EHC and balance the pressure difference between the cathode and anode. The presence of residual air in the anode can impede the interaction between hydrogen and the catalyst as well as the proton exchange membrane (PEM) resulting in a decrease in performance. In addition it was found that a single EHC has a better compression ratio and reaction rate than a double EHC. The experimental results were compatible with the theoretical calculations within less than a 7% deviation. Finally the conditions required to reach commercialization were evaluated using the theoretical model.
Total Cost of Ownership Analysis of Fuel Cell Electric Bus with Different Hydrogen Supply Alternatives
Dec 2023
Publication
In the transition to sustainable public transportation with zero-emission buses hydrogen fuel cell electric buses have emerged as a promising alternative to traditional diesel buses. However assessing their economic viability is crucial for widespread adoption. This study carries out a comprehensive examination encompassing both sensitivity and probabilistic analyses to assess the total cost of ownership (TCO) for the bus fleet and its corresponding infrastructure. It considers various hydrogen supply options encompassing on-site electrolysis on-site steam methane reforming and off-site hydrogen procurement with both gaseous and liquid delivery methods. The analysis covers critical cost elements encompassing bus acquisition costs infrastructure capital expenses and operational and maintenance costs for both buses and infrastructure. This paper conducted two distinct case studies: one involving a current small bus fleet of five buses and another focusing on a larger fleet set to launch in 2028. For the current small fleet the off-site gray hydrogen purchase with a gaseous delivery option is the most cost-effective among hydrogen alternatives but it still incurs a 26.97% higher TCO compared to diesel buses. However in the case of the expanded 2028 fleet the steam methane-reforming method without carbon capture emerges as the most likely option to attain the lowest TCO with a high probability of 99.5%. Additionally carbon emission costs were incorporated in response to the growing emphasis on environmental sustainability. The findings indicate that although diesel buses currently represent the most economical option in terms of TCO for the existing small fleet steam methane reforming with carbon capture presents a 69.2% likelihood of being the most cost-effective solution suggesting it is a strong candidate for cost efficiency for the expanded 2028 fleet. Notably substantial investments are required to increase renewable energy integration in the power grid and to enhance electrolyzer efficiency. These improvements are essential to make the electrolyzer a more competitive alternative to steam methane reforming. Overall the findings in this paper underscore the substantial impact of the hydrogen supply chain and carbon emission costs on the TCO of zero-emission buses.
Energy Transition Technology Comes With New Process Safety Challenges and Risks
Jul 2023
Publication
This paper intends to give an impression of new technologies and processes that are in development for application to achieve decarbonization and about which less or no experience on associated hazards exists in the process industry. More or less an exception is hydrogen technology because its hazards are relatively known and there is industry experience in handling it safely but problems will arise when it is produced stored and distributed on a large scale. So when its use spreads to communities and it becomes as common as natural gas now measures to control the risks will be needed. And even with hydrogen surprise findings have been shown lately e.g. its BLEVE behavior when in a liquified form stored in a vessel heated externally. Substitutes for hydrogen are not without hazard concern either. The paper will further consider the hazards of energy storage in batteries and the problems to get those hazards under control. Relatively much attention will be paid to the electrification of the process industry. Many new processes are being researched which given green energy will be beneficial to reduce greenhouse gases and enhance sustainability but of which hazards are rather unknown. Therefore as last chapter the developments with respect to the concept of hazard identification and scenario definition will be considered in quite detail. Improvements in that respect are also being possible due to the digitization of the industry and the availability of data and considering the entire life cycle all facilitated by the data model standard ISO 15926 with the scope of integration of life-cycle data for process plants including oil and gas production facilities. Conclusion is that the new technologies and processes entail new process and personal hazards and that much effort is going into renewal but safety analyses are scarce. Right in a period of process renewal attention should be focused on possibilities to implement inherently safer design.
Advancements in Hydrogen Energy Systems: A Review of Levelized Costs, Financial Incentives and Technological Innovations
Apr 2024
Publication
Hydrogen energy systems (HES) are increasingly recognized as pivotal in cutting global carbon dioxide (CO2) emissions especially in transportation power generation and industrial sectors. This paper offers a comprehensive review of HES emphasizing their diverse applications and economic viability. By 2030 hydrogen energy is expected to revolutionize various sectors significantly impacting CO2 abatement and energy demand. In electricity and power generation hydrogen could reduce CO2 emissions by 50–100 million tons annually requiring 10–20 million tons of hydrogen and an investment of $50–100 billion underscoring its role in grid stabilization. Additionally in the heating sector hydrogen could facilitate a CO2 abatement of 30–50 million tons. We examine the levelized cost of hydrogen (LCOH) production influenced by factors like production methods efficiency and infrastructure. While steam methane reforming is cost-effective it poses a larger environmental impact compared to electrolysis. The global life-cycle cost of hydrogen production decreases as production scales up with current costs ranging from $1–3 per kg for fossil-based sources to $3.4–7.5 per kg for electrolysis using low-emission electricity. These costs are projected to decrease especially for electrolytic hydrogen in regions with abundant solar energy. However despite the technical feasibility of decarbonization high production costs still pose challenges. A systematic and effective transition to a hydrogen economy requires comprehensive policy and financial support mechanisms including incentives subsidies tax measures and funding for research and development of pilot projects. Additionally the paper discusses hydrogen's role in advanced storage technologies such as hydrides and Japan's ENE-FARM solution for residential energy emphasizing the need for strategic investments across the hydrogen value chain to enhance HES competitiveness reduce LCOH and advance the learning rates of hydrogen production technologies.
Technology Assessment for the Transition to a Renewable Electric Grid
Jun 2024
Publication
To reduce carbon emissions generation of electricity from combustion systems is being replaced by renewable resources. However the most abundant renewable sources – solar and wind – are not dispatchable vary diurnally and are subject to intermittency and produce electricity at times in excess of demand (excess production). To manage this variability and capture the excess renewable energy energy storage technologies are being developed and deployed such as battery energy storage (BES) hydrogen production with electrolyzers (ELY) paired with hydrogen energy storage (HES) and fuel cells (FCs) and renewable natural gas (RNG) production. While BES may be better suited for short duration storage hydrogen is suited for long duration storage and RNG can decarbonize the natural gas system. California Senate Bill 100 (SB100) sets a goal that all retail electricity sold in the State must be sourced from renewable and zero-carbon resources by 2045 raising the questions of which set of technologies and in what proportion are required to meet the 2045 target in the required timeframe as well as the role of the natural gas infrastructure if any. To address these questions this study combines electric grid dispatch modeling and optimization to identify the energy storage and dispatchable technologies in 5-year increments from 2030 to 2045 required to transition from a 60% renewable electric grid in 2035 to a 100% renewable electric grid in 2045. The results show that by utilizing the established natural gas system to store and transmit hydrogen and RNG the deployment of battery energy storage is dramatically reduced. The required capacity for BES in 2045 for example is 40 times lower by leveraging the natural gas infrastructure with a concomitant reduction in cost and associated challenges to transform the electric grid.
Integration of Underground Green Hydrogen Storage in Hybrid Energy Generation
May 2024
Publication
One of the major challenges in harnessing energy from renewable sources like wind and solar is their intermittent nature. Energy production from these sources can vary based on weather conditions and time of day making it essential to store surplus energy for later use when there is a shortfall. Energy storage systems play a crucial role in addressing this intermittency issue and ensuring a stable and reliable energy supply. Green hydrogen sourced from renewables emerges as a promising solution to meet the rising demand for sustainable energy addressing the depletion of fossil fuels and environmental crises. In the present study underground hydrogen storage in various geological formations (aquifers depleted hydrocarbon reservoirs salt caverns) is examined emphasizing the need for a detailed geological analysis and addressing potential hazards. The paper discusses challenges associated with underground hydrogen storage including the requirement for extensive studies to understand hydrogen interactions with microorganisms. It underscores the importance of the issue with a focus on reviewing the the various past and present hydrogen storage projects and sites as well as reviewing the modeling studies in this field. The paper also emphasizes the importance of incorporating hybrid energy systems into hydrogen storage to overcome limitations associated with standalone hydrogen storage systems. It further explores the past and future integrations of underground storage of green hydrogen within this dynamic energy landscape.
Exploratory Numerical Study of Liquid Hydrogen Hazards
Sep 2023
Publication
Hydrogen is one of a handful of new low carbon solutions that will be critical for the transition to net zero. The upscaling of production and applications entails that hydrogen is likely to be stored in liquid phase (LH2) at cryogenic conditions to increase its energy density. Widespread LH2 use as an alternative fuel will require significant infrastructure upgrades to accommodate increased bulk transport storage and delivery. However current LH2 bulk storage separation distances are based on subjective expert recommendations rather than experimental observations or physical models. Experimental studies of large-scale LH2 release are challenging and costly. The existing large-scale tests are scarce and numerical studies are a viable option to investigate the existing knowledge gaps. Controlled or accidental releases of LH2 for hydrogen refueling infrastructure would result in high momentum two-phase jets or formation of liquid pools depending on release conditions. Both release scenarios lead to a flammable/explosive cloud posing a safety issue to the public.<br/>The manuscript reports exploratory study to numerically determine the safety zone resulting from cryogenic hydrogen releases related to LH2 storage and refueling using the in-house HyFOAM solver further modified for gaseous hydrogen releases at cryogenic conditions and the subsequent atmospheric dispersion and ignition within the platform of OpenFOAM V8.0. The current version of the solver neglects the flashing process by assuming that the temperature of the stored LH2 is equal to the boiling point at the atmospheric condition. Numerical simulations of dispersion and subsequent ignition of LH2 release scenarios with respect to different release orientations release rates release temperatures and weather conditions were performed. Both hydrogen concentration and temperature fields were predicted and the boundary of zones within the flammability limit was also defined. The study also considered the sensitivities of the consequences to the release orientation wind speed ambient temperature and release content etc. The effect of different barrier walls on the deflagration were also evaluated by changing the height and location.
Hydrogen-Powered Aircraft at Airports: A Review of the Infrastructure Requirements and Planning Challenges
Nov 2023
Publication
Hydrogen-fueled aircraft are a promising innovation for a sustainable future in aviation. While hydrogen aircraft design has been widely studied research on airport requirements for new infrastructure associated with hydrogen-fueled aircraft and its integration with existing facilities is scarce. This study analyzes the current body of knowledge and identifies the planning challenges which need to be overcome to enable the operation of hydrogen flights at airports. An investigation of the preparation of seven major international airports for hydrogen-powered flights finds that although there is commitment airports are not currently prepared for hydrogen-based flights. Major adjustments are required across airport sites covering land use plans airside development utility infrastructure development and safety security and training. Developments are also required across the wider aviation industry including equipment updates such as for refueling and ground support and supportive policy and regulations for hydrogen-powered aircraft. The next 5–10 years is identified from the review as a critical time period for airports given that the first commercial hydrogen-powered flight is likely to depart in 2026 and that the next generation of short-range hydrogen-powered aircraft is predicted to enter service between 2030 and 2035.
An Exploration of Safety Measures in Hydrogen Refueling Stations: Delving into Hydrogen Equipment and Technical Performance
Feb 2024
Publication
The present paper offers a thorough examination of the safety measures enforced at hydrogen filling stations emphasizing their crucial significance in the wider endeavor to advocate for hydrogen as a sustainable and reliable substitute for conventional fuels. The analysis reveals a wide range of crucial safety aspects in hydrogen refueling stations including regulated hydrogen dispensing leak detection accurate hydrogen flow measurement emergency shutdown systems fire-suppression mechanisms hydrogen distribution and pressure management and appropriate hydrogen storage and cooling for secure refueling operations. The paper therefore explores several aspects including the sophisticated architecture of hydrogen dispensers reliable leak-detection systems emergency shut-off mechanisms and the implementation of fire-suppression tactics. Furthermore it emphasizes that the safety and effectiveness of hydrogen filling stations are closely connected to the accuracy in the creation and upkeep of hydrogen dispensers. It highlights the need for materials and systems that can endure severe circumstances of elevated pressure and temperature while maintaining safety. The use of sophisticated leak-detection technology is crucial for rapidly detecting and reducing possible threats therefore improving the overall safety of these facilities. Moreover the research elucidates the complexities of emergency shut-off systems and fire-suppression tactics. These components are crucial not just for promptly managing hazards but also for maintaining the station’s structural soundness in unanticipated circumstances. In addition the study provides observations about recent technical progress in the industry. These advances effectively tackle current safety obstacles and provide the foundation for future breakthroughs in hydrogen fueling infrastructure. The integration of cutting-edge technology and materials together with the development of upgraded safety measures suggests a positive trajectory towards improved efficiency dependability and safety in hydrogen refueling stations.
A Comparative Analysis of Different Hydrogen Production Methods and Their Environmental Impact
Nov 2023
Publication
This study emphasises the growing relevance of hydrogen as a green energy source in meeting the growing need for sustainable energy solutions. It foregrounds the importance of assessing the environmental consequences of hydrogen-generating processes for their long-term viability. The article compares several hydrogen production processes in terms of scalability costeffectiveness and technical improvements. It also investigates the environmental effects of each approach considering crucial elements such as greenhouse gas emissions water use land needs and waste creation. Different industrial techniques have distinct environmental consequences. While steam methane reforming is cost-effective and has a high production capacity it is coupled with large carbon emissions. Electrolysis a technology that uses renewable resources is appealing but requires a lot of energy. Thermochemical and biomass gasification processes show promise for long-term hydrogen generation but further technological advancement is required. The research investigates techniques for improving the environmental friendliness of hydrogen generation through the use of renewable energy sources. Its ultimate purpose is to offer readers a thorough awareness of the environmental effects of various hydrogen generation strategies allowing them to make educated judgements about ecologically friendly ways. It can ease the transition to a cleaner hydrogen-powered economy by considering both technological feasibility and environmental issues enabling a more ecologically conscious and climate-friendly energy landscape.
Global Land and Water Limits to Electrolytic Hydrogen Production Using Wind and Solar Resources
Sep 2023
Publication
Proposals for achieving net-zero emissions by 2050 include scaling-up electrolytic hydrogen production however this poses technical economic and environmental challenges. One such challenge is for policymakers to ensure a sustainable future for the environment including freshwater and land resources while facilitating low-carbon hydrogen production using renewable wind and solar energy. We establish a country-by-country reference scenario for hydrogen demand in 2050 and compare it with land and water availability. Our analysis highlights countries that will be constrained by domestic natural resources to achieve electrolytic hydrogen self-sufficiency in a net-zero target. Depending on land allocation for the installation of solar panels or wind turbines less than 50% of hydrogen demand in 2050 could be met through a local production without land or water scarcity. Our findings identify potential importers and exporters of hydrogen or conversely exporters or importers of industries that would rely on electrolytic hydrogen. The abundance of land and water resources in Southern and Central-East Africa West Africa South America Canada and Australia make these countries potential leaders in hydrogen export.
Deploying Green Hydrogen to Decarbonize China's Coal Chemical Sector
Dec 2023
Publication
China’s coal chemical sector uses coal as both a fuel and feedstock and its increasing greenhouse gas (GHG) emissions are hard to abate by electrification alone. Here we explore the GHG mitigation potential and costs for onsite deployment of green H2 and O2 in China’s coal chemical sector using a lifecycle assessment and techno-economic analyses. We estimate that China’s coal chemical production resulted in GHG emissions of 1.1 gigaton CO2 equivalent (GtCO2eq) in 2020 equal to 9% of national emissions. We project GHG emissions from China’s coal chemical production in 2030 to be 1.3 GtCO2eq ~50% of which can be reduced by using solar or wind power-based electrolytic H2 and O2 to replace coal-based H2 and air separation-based O2 at a cost of 10 or 153 Chinese Yuan (CNY)/tCO2eq respectively. We suggest that provincial regions determine whether to use solar or wind power for water electrolysis based on lowest cost options which collectively reduce 53% of the 2030 baseline GHG emissions at a cost of 9 CNY/tCO2eq. Inner Mongolia Shaanxi Ningxia and Xinjiang collectively account for 52% of total GHG mitigation with net cost reductions. These regions are well suited for pilot policies to advance demonstration projects.
Multiperiod Modeling and Optimization of Hydrogen-Based Dense Energy Carrier Supply Chains
Feb 2024
Publication
The production of hydrogen-based dense energy carriers (DECs) has been proposed as a combined solution for the storage and dispatch of power generated through intermittent renewables. Frameworks that model and optimize the production storage and dispatch of generated energy are important for data-driven decision making in the energy systems space. The proposed multiperiod framework considers the evolution of technology costs under different levels of promotion through research and targeted policies using the year 2021 as a baseline. Furthermore carbon credits are included as proposed by the 45Q tax amendment for the capture sequestration and utilization of carbon. The implementation of the mixed-integer linear programming (MILP) framework is illustrated through computational case studies to meet set hydrogen demands. The trade-offs between different technology pathways and contributions to system expenditure are elucidated and promising configurations and technology niches are identified. It is found that while carbon credits can subsidize carbon capture utilization and sequestration (CCUS) pathways substantial reductions in the cost of novel processes are needed to compete with extant technology pathways. Further research and policy push can reduce the levelized cost of hydrogen (LCOH) by upwards of 2 USD/kg.
Prediction of Transient Hydrogen Flow of Proton Exchange Membrane Electrolyzer Using Artificial Neural Network
Aug 2023
Publication
A proton exchange membrane (PEM) electrolyzer is fed with water and powered by electric power to electrochemically produce hydrogen at low operating temperatures and emits oxygen as a by-product. Due to the complex nature of the performance of PEM electrolyzers the application of an artificial neural network (ANN) is capable of predicting its dynamic characteristics. A handful of studies have examined and explored ANN in the prediction of the transient characteristics of PEM electrolyzers. This research explores the estimation of the transient behavior of a PEM electrolyzer stack under various operational conditions. Input variables in this study include stack current oxygen pressure hydrogen pressure and stack temperature. ANN models using three differing learning algorithms and time delay structures estimated the hydrogen mass flow rate which had transient behavior from 0 to 1 kg/h and forecasted better with a higher count (>5) of hidden layer neurons. A coefficient of determination of 0.84 and a mean squared error of less than 0.005 were recorded. The best-fitting model to predict the dynamic behavior of the hydrogen mass flow rate was an ANN model using the Levenberg–Marquardt algorithm with 40 neurons that had a coefficient of determination of 0.90 and a mean squared error of 0.00337. In conclusion optimally fit models of hydrogen flow from PEM electrolyzers utilizing artificial neural networks were developed. Such models are useful in establishing an agile flow control system for the electrolyzer system to help decrease power consumption and increase efficiency in hydrogen generation.
No more items...