Fast Synthesis of TiNi by Mechanical Alloying and its Hydrogenation Properties


Mechanical alloying is widely used for the synthesis of hydrogen storage materials. However, amorphization and contamination triggered by long-time milling are serious drawbacks for obtaining efficient hydrogen storage. In this work, short-time ball milling synthesis is explored for a representative hydride forming compound: TiNi. Through structural, morphological and chemical characterizations, we evidence that formation of TiNi is complete in only 20 min with minor Fe contamination (0.2 wt%). Cross-sectional analysis of powder stuck on milling balls reveals that alloy formation occurs through the interdiffusion between thin layers of co-laminated pure elements. Hydrogenation thermodynamics and kinetics of short-time mechanically alloyed TiNi are similar to those of coarse-grained compounds obtained by classical high-temperature melting. Mechanical alloying is a suitable method for fast and energy-efficient synthesis of intermetallic compounds such as TiNi.

Countries: France ; Japan

Article metrics loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error