1900

Digital navigation of energy–structure–function maps for hydrogen-bonded porous molecular crystals

Abstract

Energy–structure–function (ESF) maps can aid the targeted discovery of porous molecular crystals by predicting the stable crystalline arrangements along with their functions of interest. Here, we compute ESF maps for a series of rigid molecules that comprise either a triptycene or a spiro-biphenyl core, functionalized with six different hydrogen-bonding moieties. We show that the positioning of the hydrogen-bonding sites, as well as their number, has a profound influence on the shape of the resulting ESF maps, revealing promising structure–function spaces for future experiments. We also demonstrate a simple and general approach to representing and inspecting the high-dimensional data of an ESF map, enabling an efficient navigation of the ESF data to identify ‘landmark’ structures that are energetically favourable or functionally interesting. This is a step toward the automated analysis of ESF maps, an important goal for closed-loop, autonomous searches for molecular crystals with useful functions.

Related subjects: Applications & Pathways
Loading

Article metrics loading...

/content/journal1449
2021-02-05
2021-07-24
http://instance.metastore.ingenta.com/content/journal1449
Loading

Supplements

Digital navigation of energy–structure–function maps for hydrogen-bonded porous molecular crystals

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error