United Kingdom
Net Zero The UK's Contribution to Stopping Global Warming
May 2019
Publication
This report responds to a request from the Governments of the UK Wales and Scotland asking the Committee to reassess the UK’s long-term emissions targets. Our new emissions scenarios draw on ten new research projects three expert advisory groups and reviews of the work of the IPCC and others.<br/>The conclusions are supported by detailed analysis published in the Net Zero Technical Report that has been carried out for each sector of the economy plus consideration of F-gas emissions and greenhouse gas removals.
Committee for Climate Change Fifth Carbon Budget: Central Scenario Data
Jul 2016
Publication
This spreadsheet contains data for two future UK scenarios: a "baseline" (i.e. no climate action after 2008 the start of the carbon budget system) and the "central" scenario underpinning the CCC's advice on the fifth carbon budget (the limit to domestic emissions during the period 2028-32).<br/>The central scenario is an assessment of the technologies and behaviours that would prepare for the 2050 target cost-effectively while meeting the other criteria in the Climate Change Act (2008) based on central views of technology costs fuel prices carbon prices and feasibility. It is not prescriptive nor is it the only scenario considered for meeting the carbon budgets. For further details on our scenarios and how they were generated see the CCC report Sectoral scenarios for the Fifth Carbon Budget. The scenario was constructed for the CCC's November 2015 report and has not been further updated for example to reflect outturn data for 2015 or changes to Government policy.
The Fourth Carbon Budget Review – Part 2 The Cost-effective Path to the 2050 Target
Nov 2013
Publication
This is the second document of a two-part review of the Fourth Carbon Budget which covers 2023 to 2027. The Fourth Carbon Budget agreed by the Government in June 2011 was scheduled to be reviewed in 2014. The first part of the review is available here: The Fourth Carbon Budget Review – part 1: assessment of climate risk and the international response (November 2013).<br/>According to the Climate Change Act 2008 carbon budgets can only be altered if there is a significant change in circumstances upon which the budget was set. Any such change in circumstances must be demonstrated through evidence and analysis.<br/>The Fourth Carbon Budget Review – part 2 considers the impacts of meeting the 2023-2027 budget. The review concludes that the impacts are small and manageable and identifies broader benefits associated with meeting the fourth carbon budget including: improved energy security improved air quality and reduced noise pollution.
Meeting Carbon Budgets – Ensuring a Low-carbon Recovery
Jun 2010
Publication
As part of its statutory role the Committee provides annual reports to Parliament on the progress that Government is making in meeting carbon budgets and in reducing emissions of greenhouse gases.<br/>Meeting Carbon Budgets – ensuring a low-carbon recovery is the Committee’s 2nd progress report. Within this report we assess the latest emissions data and determine whether emissions reductions have occurred as a result of the recession or as a result of other external factors. We assess Government’s progress towards achieving emissions reductions in 4 key areas of: Power Buildings and Industry Transport and Agriculture.
The Fifth Carbon Budget: The Next Step Towards a Low-carbon Economy
Nov 2015
Publication
This report sets out our advice on the fifth carbon budget covering the period 2028-2032 as required under Section 4 of the Climate Change Act; the Government will propose draft legislation for the fifth budget in summer 2016.
Paths to Low-cost Hydrogen Energy at a Scale for Transportation Applications in the USA and China via Liquid-hydrogen Distribution Networks
Dec 2019
Publication
The cost of delivered H2 using the liquid-distribution pathway will approach $4.3–8.0/kg in the USA and 26–52 RMB/kg in China by around 2030 assuming large-scale adoption. Historically hydrogen as an industrial gas and a chemical feedstock has enjoyed a long and successful history. However it has been slow to take off as an energy carrier for transportation despite its benefits in energy diversity security and environmental stewardship. A key reason for this lack of progress is that the cost is currently too high to displace petroleum-based fuels. This paper reviews the prospects for hydrogen as an energy carrier for transportation clarifies the current drivers for cost in the USA and China and shows the potential for a liquid-hydrogen supply chain to reduce the costs of delivered H2. Technical and economic trade-offs between individual steps in the supply chain (viz. production transportation refuelling) are examined and used to show that liquid-H2 (LH2) distribution approaches offer a path to reducing the delivery cost of H2 to the point at which it could be competitive with gasoline and diesel fuel.
Public Acceptability of the Use of Hydrogen for Heating and Cooking in the Home: Results from Qualitative and Quantitative Research in UK<br/>Executive Summary
Nov 2018
Publication
This report for the CCC by Madano and Element Energy assesses the public acceptability of two alternative low-carbon technologies for heating the home: hydrogen heating and heat pumps.
These technologies could potentially replace natural gas in many UK households as part of the government’s efforts to decrease carbon emissions in the UK.
The report’s key findings are:
These technologies could potentially replace natural gas in many UK households as part of the government’s efforts to decrease carbon emissions in the UK.
The report’s key findings are:
- carbon emissions reduction is viewed as an important issue but there is limited awareness of the need to decarbonise household heating or the implications of switching over to low-carbon heating technologies
- acceptability of both heating technologies is limited by a lack of perceived tangible consumer benefit which has the potential to drive scepticism towards the switch over more generally
- heating technology preferences are not fixed at this stage although heat pumps appear to be the favoured option in this research studythree overarching factors were identified as influencing preferences for heating technologies.
- perceptions of the negative installation burden
- familiarity with the lived experience of using the technologies for heating
- perceptions of how well the technologies would meet modern heating needs both hydrogen heating and heat pumps face significant challenges to secure public acceptability
An Independent Assessment of the UK’s Clean Growth Strategy: From Ambition to Action
Nov 2018
Publication
This report provides the Committee on Climate Change’s response to the UK Government’s Clean Growth Strategy.
The report finds that:
The report finds that:
- The Government has made a strong commitment to achieving the UK’s climate change targets.
- Policies and proposals set out in the Clean Growth Strategy will need to be firmed up.
- Gaps to meeting the fourth and fifth carbon budgets remain. These gaps must be closed.
- Risks of under-delivery must be addressed and carbon budgets met on time.
Future Regulation of the Gas Grid
Jun 2016
Publication
The CCC has established a variety of viable scenarios in which UK decarbonisation targets can be met. Each has consequences for the way in which the UK’s gas network infrastructure is utilised. This report considers the implications of decarbonisation for the future regulation of the gas grid.<br/>The CCC’s 5th Carbon Budget envisaged different scenarios that would enable the UK to meet its emissions targets for 2050. These scenarios represent holistic analyses based on internally consistent combinations of different technologies which could deliver carbon reductions across different sectors of the economy.<br/>The CCC’s scenarios incorporate projections of the demand for natural gas to 2050. The scenarios imply that the volume of throughput on the gas networks1 and the nature and location of network usage is likely to change significantly to meet emissions targets. They are also characterised by significant uncertainty.<br/>Under some decarbonisation scenarios gas networks could be re-purposed to supply hydrogen instead of natural gas meaning there would be ongoing need for network infrastructure.<br/>In other scenarios gas demand in buildings is largely replaced by electric alternatives meaning portions of the low pressure gas distribution networks could be decommissioned.<br/>Patchwork scenarios are also possible in which there is a mixture of these outcomes across the country.<br/>In this project the CCC wished to assess the potential implications for gas networks under these different demand scenarios; and evaluate the associated challenges for Government and regulatory policy. The challenge for BEIS and Ofgem is how to regulate in a way that keeps options open while uncertainty persists about the best solution for the UK; and at the same time how best to make policy and regulatory decisions which would serve to reduce this uncertainty. Both Government and Ofgem have policy and regulatory levers that they can use – and we identify and evaluate such levers in this report.
Meeting Carbon Budgets – 2014 Progress Report to Parliament
Jul 2014
Publication
This is our sixth statutory report to Parliament on progress towards meeting carbon budgets. In it we consider the latest data on emissions and their drivers. This year the report also includes a full assessment of how the first carbon budget (2008-2012) was met drawing out policy lessons and setting out what is required for the future to stay on track for the legislated carbon budgets and the 2050 target. The report includes assessment at the level of the economy the non-traded and traded sectors the key emitting sectors and the devolved administrations. Whilst the first carbon budget has been met and progress made on development and implementation of some policies the main conclusion is that strengthening of policies will be needed to meet future budgets.
Electric and Hydrogen Buses: Shifting from Conventionally Fuelled Cars in the UK
May 2020
Publication
For the UK to meet their national target of net zero emissions as part of the central Paris Agreement target further emphasis needs to be placed on decarbonizing public transport and moving away from personal transport (conventionally fuelled vehicles (CFVs) and electric vehicles (EVs)). Electric buses (EBs) and hydrogen buses (HBs) have the potential to fulfil requirements if powered from low carbon renewable energy sources.
A comparison of carbon dioxide (CO2) emissions produced from conventionally fuelled buses (CFB) EBs and HBs between 2017 and 2050 under four National Grid electricity scenarios was conducted. In addition emissions per person at different vehicle capacity levels (100% 75% 50% and 25%) were projected for CFBs HBs EBs and personal transport assuming a maximum of 80 passengers per bus and four per personal vehicle.
Results indicated that CFVs produced 30 g CO2km−1 per person compared to 16.3 g CO2 km−1 per person by CFBs by 2050. At 100% capacity under the two-degree scenario CFB emissions were 36 times higher than EBs 9 times higher than HBs and 12 times higher than EVs in 2050. Cumulative emissions under all electricity scenarios remained lower for EBs and HBs.
Policy makers need to focus on encouraging a modal shift from personal transport towards sustainable public transport primarily EBs as the lowest level emitting vehicle type. Simple electrification of personal vehicles will not meet the required targets. Simultaneously CFBs need to be replaced with EBs and HBs if the UK is going to meet emission targets.
A comparison of carbon dioxide (CO2) emissions produced from conventionally fuelled buses (CFB) EBs and HBs between 2017 and 2050 under four National Grid electricity scenarios was conducted. In addition emissions per person at different vehicle capacity levels (100% 75% 50% and 25%) were projected for CFBs HBs EBs and personal transport assuming a maximum of 80 passengers per bus and four per personal vehicle.
Results indicated that CFVs produced 30 g CO2km−1 per person compared to 16.3 g CO2 km−1 per person by CFBs by 2050. At 100% capacity under the two-degree scenario CFB emissions were 36 times higher than EBs 9 times higher than HBs and 12 times higher than EVs in 2050. Cumulative emissions under all electricity scenarios remained lower for EBs and HBs.
Policy makers need to focus on encouraging a modal shift from personal transport towards sustainable public transport primarily EBs as the lowest level emitting vehicle type. Simple electrification of personal vehicles will not meet the required targets. Simultaneously CFBs need to be replaced with EBs and HBs if the UK is going to meet emission targets.
CFD Computations of Liquid Hydrogen Releases
Sep 2011
Publication
Hydrogen is widely recognized as an attractive energy carrier due to its low-level air pollution and its high mass-related energy density. However its wide flammability range and high burning velocity present a potentially significant hazard. A significant fraction of hydrogen is stored and transported as a cryogenic liquid (liquid hydrogen or LH2) as it requires much less volume compared to gaseous hydrogen. In order to exist as a liquid H2 must be cooled to a very low temperature 20.28 K. LH2 is a common liquid fuel for rocket applications. It can also be used as the fuel storage in an internal combustion engine or fuel cell for transport applications. Models for handling liquid releases both two-phase flashing jets and pool spills have been developed in the CFD-model FLACS. The very low normal boiling point of hydrogen (20 K) leads to particular challenges as this is significantly lower than the boiling points of oxygen (90 K) and nitrogen (77 K). Therefore a release of LH2 in the atmosphere may induce partial condensation or even freezing of the oxygen and nitrogen present in the air. A pool model within the CFD software FLACS is used to compute the spreading and vaporization of the liquid hydrogen depositing on the ground where the partial condensation or freezing of the oxygen and nitrogen is also taken into account. In our computations of two-phase jets the dispersed and continuous phases are assumed to be in thermodynamic and kinematic equilibrium. Simulations with the new models are compared against selected experiments performed at the Health and Safety Laboratory (HSL).
Reducing Emissions in Scotland – 2016 Progress Report
Sep 2016
Publication
This is the Committee’s fifth report on Scotland’s progress towards meeting emission reduction targets as requested by Scottish Ministers under the Climate Change (Scotland) Act 2009.<br/>The Scottish Act sets a long-term target to reduce emissions of greenhouse gases (GHGs) by at least 80% in 2050 relative to 1990 with an interim target to reduce emissions by 42% in 2020. Secondary legislation passed in October 2010 and October 2011 also set a series of annual emission reduction targets for 2010 to 2022 and 2023 to 2027 respectively. We advised the Scottish Government on annual targets for the period 2028 to 2032 in March 2016 and July 2016.<br/>The report reveals that Scotland’s annual emissions reduction target for 2014 was met with gross Scottish greenhouse gas emissions including international aviation and shipping falling by 8.6% in 2014. This compares to a 7.3% fall for the UK as a whole. Since 1990 gross Scottish emissions have fallen nearly 40% compared to nearly 33% at a UK level.
Reducing Emissions in Northern Ireland
Feb 2019
Publication
In this report the Committee sets out how Northern Ireland can reduce its greenhouse gas emissions between now and 2030 in order to meet UK-wide climate change targets.
The report’s key findings are:
The report’s key findings are:
- Existing policies are not enough to deliver this reduction
- There are excellent opportunities to close this gap and go beyond 35%
- Meeting the cost-effective path to decarbonisation in Northern Ireland will require action across all sectors of the economy and a more joined-up approach
Quantifying Greenhouse Gas Emissions
Apr 2017
Publication
In this report Quantifying Greenhouse Gas Emissions the Committee on Climate Change assesses how the UK’s greenhouse gas emissions are quantified where uncertainties lie and the implications for setting carbon budgets and measuring progress against climate change targets. The report finds that:
- The methodology for constructing the UK’s greenhouse gas inventory is rigorous but the process for identifying improvements could be strengthened.
- There is high confidence over large parts of the inventory. A small number of sectors contribute most to uncertainty and research efforts should be directed at improving these estimates.
- UK greenhouse gas emissions for 2014 were within ±3% of the estimated level with 95% confidence which is a low level of uncertainty by international standards.
- Methodology revisions in recent years have tended to increase estimated emissions but these changes have been within uncertainty margins.
- Statistical uncertainty in the current greenhouse gas inventory is low but could rise in future.
- Uncertainty also arises from sources of emissions not currently included in the inventory and from potential changes to IPCC guidelines.
- Independent external validation of greenhouse gas emissions is important and new monitoring techniques should be encouraged.
- Government should continue to monitor consumption-based greenhouse gas estimates and support continued research to improve methodology and reduce uncertainty in these estimates.
Reducing Emissions in Scotland – 2017 Progress Report
Sep 2017
Publication
The Scottish Act sets a long-term target to reduce emissions of greenhouse gases (GHGs) by at least 80% in 2050 relative to 1990 with an interim target to reduce emissions by 42% in 2020. Secondary legislation passed in October 2010 and October 2011 also set a series of annual emission reduction targets for 2010 to 2022 and 2023 to 2027 respectively. We advised the Scottish Government on annual targets for the period 2028 to 2032 in March 2016 and July 2016.<br/>The report reveals that Scotland’s annual emissions reduction target for 2014 was met with gross Scottish greenhouse gas emissions including international aviation and shipping falling by 8.6% in 2014. This compares to a 7.3% fall for the UK as a whole. Since 1990 gross Scottish emissions have fallen nearly 40% compared to nearly 33% at a UK level.
Reducing Emissions in Scotland 2019 Progress Report
Dec 2019
Publication
This is the eighth annual Progress Report to the Scottish Parliament required by Scottish Ministers under the Climate Change (Scotland) Act 2009. It assesses Scotland’s progress in achieving its legislated targets to reduce greenhouse gas emissions.<br/>Overall greenhouse gas emissions reduced by 3% in 2017 compared to a 10% fall in 2016. The fall was again led by the power sector due in large part to Scotland’s first full year of coal-free electricity generation. Recent performance in other sectors shows only incremental improvement at best and unless emissions reductions are delivered economy-wide Scotland is at risk of missing its new interim target of a 56% reduction in emissions by 2020. Setting a net-zero greenhouse gas emissions target for 2045 represents a step-change in ambition for Scotland. The Scottish Parliament’s 2030 target to reduce emissions by 75% will be extremely challenging to meet. It must be backed up by steps to drive meaningful emissions reductions immediately.<br/>Scotland’s Programme for Government 2019-20 alongside other recent policies sent a clear signal that the Scottish Government is taking its more ambitious targets seriously but there is much more to do.Scotland’s ability to deliver its net-zero target is contingent on action taken in the UK and vice versa.
Hydrogen in a Low-carbon Economy
Nov 2018
Publication
This report by the Committee on Climate Change (CCC) assesses the potential role of hydrogen in the UK’s low-carbon economy.
It finds that hydrogen:
It finds that hydrogen:
- is a credible option to help decarbonise the UK energy system but its role depends on early Government commitment and improved support to develop the UK’s industrial capability
- can make an important contribution to long-term decarbonisation if combined with greater energy efficiency cheap low-carbon power generation electrified transport and new ‘hybrid’ heat pump systems which have been successfully trialled in the UK
- could replace natural gas in parts of the energy system where electrification is not feasible or is prohibitively expensive for example in providing heat on colder winter days industrial heat processes and back-up power generation
- is not a ‘silver bullet’ solution; the report explores some commonly-held misconceptions highlighting the need for careful planning
- Government must commit to developing a low-carbon heat strategy within the next three years
- Significant volumes of low-carbon hydrogen should be produced in a carbon capture and storage (CCS) ‘cluster’ by 2030 to help the industry grow
- Government must support the early demonstration of the everyday uses of hydrogen in order to establish the practicality of switching from natural gas to hydrogen
- There is low awareness amongst the general public of reasons to move away from natural gas heating to low-carbon alternatives
- A strategy should be developed for low-carbon heavy goods vehicles (HGVs) which encourages a move away from fossil fuels and biofuels to zero-emission solutions by 2050
Reducing Emissions in Scotland – 2018 Progress Report
Sep 2019
Publication
This is the Committee’s seventh report on Scotland’s progress towards meetings emissions targets as requested by Scottish Ministers under the Climate Change (Scotland) Act 2009.
Overall Scotland continues to outperform the rest of the UK in reducing its greenhouse gas emissions but successful strategies for energy and waste mask a lack of progress in other parts of the Scottish economy.
The report shows that Scotland’s total emissions fell by 10% in 2016 compared to 2015. The lion’s share of this latest drop in emissions came from electricity generation.
The key findings are:
Overall Scotland continues to outperform the rest of the UK in reducing its greenhouse gas emissions but successful strategies for energy and waste mask a lack of progress in other parts of the Scottish economy.
The report shows that Scotland’s total emissions fell by 10% in 2016 compared to 2015. The lion’s share of this latest drop in emissions came from electricity generation.
The key findings are:
- Overall Scotland met its annual emissions targets in 2016.
- Scotland’s progress in reducing emissions from the power sector masks a lack of action in other areas particularly transport agriculture forestry and land use.
- Low-carbon heat transport agriculture and forestry sector policies need to improve in order to hit 2032 emissions targets.
- The Scottish Government’s Climate Change Plan – published in February 2018 – now has sensible expectations across each sector to reduce emissions.
Propulsion of a Hydrogen-fuelled LH2 Tanker Ship
Mar 2022
Publication
This study aims to present a philosophical and quantitative perspective of a propulsion system for a large-scale hydrogen-fuelled liquid-hydrogen (LH2) tanker ship. Established methods are used to evaluate the design and performance of an LH2-carrier propulsion system for JAMILA a ship designed with four cylindrical LH2 tanks bearing a total capacity of ~280000 m3 along with cargo and using the boil-off as propulsion and power fuel. Additionally the ship propulsion system is evaluated based on the ship resistance requirements and a hydrogen-fuelled combined-cycle gas turbine is modelled to achieve the dual objectives of high efficiency and zero-carbon footprint. The required inputs primarily involve the off-design and degraded performance of the gas-turbine topping cycle and the proposed power plant operates with a total output power of 50 M.W. The results reveal that the output power allows ship operation at a great speed even with a degraded engine and adverse ambient conditions.
No more items...