1900

Evaluation of Steels Susceptibility to Hydrogen Embrittlement: A Thermal Desorption Spectroscopy-Based Approach Coupled with Artificial Neural Network

Abstract

A novel approach has been developed for quantitative evaluation of the susceptibility of steels and alloys to hydrogen embrittlement. The approach uses a combination of hydrogen thermal desorption spectroscopy (TDS) analysis with recent advances in machine learning technology to develop a regression artificial neural network (ANN) model predicting hydrogen-induced degradation of mechanical properties of steels. We describe the thermal desorption data processing, artificial neural network architecture development, and the learning process beneficial for the accuracy of the developed artificial neural network model. A data augmentation procedure was proposed to increase the diversity of the input data and improve the generalization of the model. The study of the relationship between thermal desorption spectroscopy data and the mechanical properties of steel evidences a strong correlation of their corresponding parameters. A prototype software application based on the developed model is introduced and is openly available. The developed prototype based on TDS analysis coupled with ANN is shown to be a valuable engineering tool for steel characterization and quantitative prediction of the degradation of steel properties caused by hydrogen.

Funding source: School of Engineering of Aalto University, via post-doctoral scholarship no. 9155273; Business Finland, via ISA Aalto HydroSafeSteels project no. 7743/31/2018; Academy of Finland, via the EARLY project no. 325108.
Countries: Finland
Loading

Article metrics loading...

/content/journal1749
2020-12-02
2021-07-24
http://instance.metastore.ingenta.com/content/journal1749
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error