Skip to content
1900

An Investigation of a (Vinylbenzyl) Trimethylammonium and N-Vinylimidazole-Substituted Poly (Vinylidene Fluoride-Co-Hexafluoropropylene) Copolymer as an Anion-Exchange Membrane in a Lignin-Oxidising Electrolyser

Abstract

Electrolysis is seen as a promising route for the production of hydrogen from water, as part of a move to a wider “hydrogen economy”. The electro-oxidation of renewable feedstocks offers an alternative anode couple to the (high-overpotential) electrochemical oxygen evolution reaction for developing low-voltage electrolysers. Meanwhile, the exploration of new membrane materials is also important in order to try and reduce the capital costs of electrolysers. In this work, we synthesise and characterise a previously unreported anion-exchange membrane consisting of a fluorinated polymer backbone grafted with imidazole and trimethylammonium units as the ion-conducting moieties. We then investigate the use of this membrane in a lignin-oxidising electrolyser. The new membrane performs comparably to a commercially-available anion-exchange membrane (Fumapem) for this purpose over short timescales (delivering current densities of 4.4 mA cm−2 for lignin oxidation at a cell potential of 1.2 V at 70 °C during linear sweep voltammetry), but membrane durability was found to be a significant issue over extended testing durations. This work therefore suggests that membranes of the sort described herein might be usefully employed for lignin electrolysis applications if their robustness can be improved.

Related subjects: Production & Supply Chain
Countries: India ; United Kingdom
Loading

Article metrics loading...

/content/journal2115
2021-06-02
2024-07-27
/content/journal2115
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error