Skip to content

Artificial Neural Networks for Predicting Hydrogen Production in Catalytic Dry Reforming: A Systematic Review


Dry reforming of hydrocarbons, alcohols, and biological compounds is one of the most promising and effective avenues to increase hydrogen (H2 ) production. Catalytic dry reforming is used to facilitate the reforming process. The most popular catalysts for dry reforming are Ni-based catalysts. Due to their inactivation at high temperatures, these catalysts need to use metal supports, which have received special attention from researchers in recent years. Due to the existence of a wide range of metal supports and the need for accurate detection of higher H2 production, in this study, a systematic review and meta-analysis using ANNs were conducted to assess the hydrogen production by various catalysts in the dry reforming process. The Scopus, Embase, and Web of Science databases were investigated to retrieve the related articles from 1 January 2000 until 20 January 2021. Forty-seven articles containing 100 studies were included. To determine optimal models for three target factors (hydrocarbon conversion, hydrogen yield, and stability test time), artificial neural networks (ANNs) combined with differential evolution (DE) were applied. The best models obtained had an average relative error for the testing data of 0.52% for conversion, 3.36% for stability, and 0.03% for yield. These small differences between experimental results and predictions indicate a good generalization capability.

Funding source: The authors acknowledge the financial support from Qatar University, International Research Collaboration Co-funds (IRCC-2020-011). The APC was funded by IRCC-2020-011.
Related subjects: Production & Supply Chain
Countries: Qatar ; Romania ; Viet Nam

Article metrics loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error