Skip to content

The Role of Effectiveness Factor on the Modeling of Methanol Steam Reforming Over CuO/ZnO/Al2O3 Catalyst in a Multi-tubular Reactor


A pseudo-homogeneous model for the methanol steam reforming process was developed based on reaction kinetics over a CuO/ZnO/Al2O3 catalyst and non-adiabatic heat and mass transfer performances in a co-current packed-bed reactor. A Thiele modulus method and an intraparticle distribution method were applied for predicting the effectiveness factors for main reactions and providing insights into the diffusion-reaction process in a cylindrical catalyst pellet. The results of both methods are validated and show good agreements with the experimental data, but the intraparticle distribution method provides better predictions. Results indicate that increases in catalyst size and bulk fluid temperature amplify the impact of intraparticle diffusion limitations, showing a decrease in effectiveness factors. To satisfy the requirements of a high temperature polymer electrolyte membrane fuel cell stack, the optimized operating conditions, which bring the methanol and CO concentrations to less than 1% vol in the reformate stream, are determined based on the simulation results.

Funding source: The research leading to these results has received funding from the Chinese scholarship council (CSC) and from the Danish Energy Technology Development and Demonstration Program (EUDP) through the COmmercial BReakthrough of Advanced fuel cells (COBRA Drive) project, grant number 64 018-0118
Related subjects: Production & Supply Chain
Countries: Denmark

Article metrics loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error