Denmark
Optimal Operation of the Hydrogen-based Energy Management System with P2X Demand Response and Ammonia Plant
Jul 2021
Publication
Hydrogen production is the key in utilizing an excess renewable energy. Many studies and projects looked at the energy management systems (EMSs) that allow to couple hydrogen production with renewable generation. In the majority of these studies however hydrogen demand is either produced for powering fuel cells or sold to the external hydrogen market. Hydrogen demand from actual industrial plants is rarely considered. In this paper we propose an EMS based on the industrial cluster of GreenLab Skive (GLS) that can minimize the system’s operational cost or maximize its green hydrogen production. EMS utilizes a conventional and P2X demand response (DR) flexibility from electrolysis plant hydrogen storage tank electric battery and hydrogen-consuming plants to design the optimal schedule with maximized benefits. A potential addition to the existing components at GLS - an ammonia plant is modelled to identify its P2X potential and assess the economic viability of its construction. The results show a potential reduction of 51.5–61.6% for the total operational cost of the system and an increase of the share of green hydrogen by 10.4–37.6% due to EMS operation.
From Renewable Energy to Sustainable Protein Sources: Advancement, Challenges, and Future Roadmaps
Jan 2022
Publication
The concerns over food security and protein scarcity driven by population increase and higher standards of living have pushed scientists toward finding new protein sources. A considerable proportion of resources and agricultural lands are currently dedicated to proteinaceous feed production to raise livestock and poultry for human consumption. The 1st generation of microbial protein (MP) came into the market as land-independent proteinaceous feed for livestock and aquaculture. However MP may be a less sustainable alternative to conventional feeds such as soybean meal and fishmeal because this technology currently requires natural gas and synthetic chemicals. These challenges have directed researchers toward the production of 2nd generation MP by integrating renewable energies anaerobic digestion nutrient recovery biogas cleaning and upgrading carbon-capture technologies and fermentation. The fermentation of methane-oxidizing bacteria (MOB) and hydrogen-oxidizing bacteria (HOB) i.e. two protein rich microorganisms has shown a great potential on the one hand to upcycle effluents from anaerobic digestion into protein rich biomass and on the other hand to be coupled to renewable energy systems under the concept of Power-to-X. This work compares various production routes for 2nd generation MP by reviewing the latest studies conducted in this context and introducing the state-of-the-art technologies hoping that the findings can accelerate and facilitate upscaling of MP production. The results show that 2nd generation MP depends on the expansion of renewable energies. In countries with high penetration of renewable electricity such as Nordic countries off-peak surplus electricity can be used within MP-industry by supplying electrolytic H2 which is the driving factor for both MOB and HOB-based MP production. However nutrient recovery technologies are the heart of the 2nd generation MP industry as they determine the process costs and quality of the final product. Although huge attempts have been made to date in this context some bottlenecks such as immature nutrient recovery technologies less efficient fermenters with insufficient gas-to-liquid transfer and costly electrolytic hydrogen production and storage have hindered the scale up of MP production. Furthermore further research into techno-economic feasibility and life cycle assessment (LCA) of coupled technologies is still needed to identify key points for improvement and thereby secure a sustainable production system.
Determination Of Hazardous Zones For A Generic Hydrogen Station – A Case Study
Sep 2007
Publication
A method for determination of hazardous zones for hydrogen installations has been studied. This work has been carried out within the NoE HySafe. The method is based on the Italian Method outlined in Guide 31-30(2004) Guide 31–35(2001) Guide 31-35/A(2001) and Guide 31-35/A; V1(2003). Hazardous zones for a “generic hydrogen refuelling station”(HRS) are assessed based on this method. The method is consistent with the EU directive 1999/92/EC “Safety and Health Protection of Workers potentially at risk from explosive atmospheres” which is the basis for determination of hazardous zones in Europe. This regulation is focused on protection of workers and is relevant for hydrogen installations such as hydrogen refuelling stations repair shops and other stationary installations where some type of work operations will be involved. The method is also based on the IEC standard and European norm IEC/EN60079-10 “Electrical apparatus for explosive gas atmospheres. Part 10 Classification of hazardous areas”. This is a widely acknowledged international standard/norm and it is accepted/approved by Fire and Safety Authorities in Europe and also internationally. Results from the HySafe work and other studies relevant for hydrogen and hydrogen installations have been included in the case study. Sensitivity studies have been carried out to examine the effect of varying equipment failure frequencies and leak sizes as well as environmental condition (ventilation obstacles etc.). The discharge and gas dispersion calculations in the Italian Method are based on simple mathematical formulas. However in this work also CFD (Computational Fluid Dynamics) and other simpler numerical tools have been used to quantitatively estimate the effect of ventilation and of different release locations on the size of the flammable gas cloud. Concentration limits for hydrogen to be used as basis for the extent of the hazardous zones in different situations are discussed.
Hydrogen-fueled Car Fire Spread to Adjacent Vehicles in Car Parks
Sep 2019
Publication
Car park fires are known to be dangerous due to the risk of fast fire spread from one car to another. In general no fatalities are recorded in such fires but they may have a great cost in relation to damaged cars and structural repair. A very recent example is the Liverpool multi-storey car park fire from December 31 2017. It destroyed 1400 cars and parts of the building structure collapsed. This questions the validity of current design praxis of car parks. Literature studies assumes a 12 minutes period for the fire spread from one gasoline fuelled car to another. Statistical research and test from the European commission of steel structures states that in an open car park at most 3-4 vehicles are expected to be on fire at the same time.<br/>A number of investigations have been made concerning vehicles performance in car park fires but only a few are concerned with hydrogen-fuelled vehicles (HFV). It is therefore important to investigate how these new vehicles may contribute to potential fire spread scenario. The aim of the paper is to report the outcome of car park fire spread simulations involving common fuelled and hydrogen fuelled cars. The case study is based on a typical car park found in Denmark. The simulation applied numerical models implemented in the Fire Dynamic Simulator (FDS). In particular the focus of the study is on the influence of the parking distance to fire spread to adjacent vehicles in case a TPRD is activated during a car fire. The results help understanding whether different design rules should be envisaged for such structures or how a sufficient safety level can be obtained by ensuring specific parking condition for the hydrogen-fuelled cars.
Investigation of Turbulent Premixed Methane/Air and Hydrogen-enriched Methane/Air Flames in a Laboratory-scale Gas Turbine Model Combustor
Feb 2021
Publication
Methane and hydrogen-enriched (25 vol% and 50 vol% H2 -enriched CH4) methane/air premixed flames were investigated in a gas turbine model combustor under atmospheric conditions. The flame operability ranges were mapped at different Reynold numbers (Re) showing the dependence on Re and H2 concentrations. The effects of equivalence ratio (Φ) Re and H2 enrichment on flame structure were examined employing OH-PLIF measurement. For CH4/air cases the flame was stabilized with an M shape; while for H2 -enriched cases the flame transitions to a П shape above a specific Φ. This transition was observed to influence significantly the flashback limits. The flame shape transition is most likely a result of H2 enrichment occurring due to the increase in flame speed higher resistance of the flame to the strain rate and change in the inner recirculation zone. Flow fields of CH4/air flames were compared between low and high Re cases employing high-speed PIV. The flashback events led by two mechanisms (combustion-induced vortex breakdown CIVB and boundary-layer flashback BLF) were observed and recorded using high-speed OH chemiluminescence imaging. It was found that the CIVB flashback occurred only for CH4 flames with M shape whereas the BLF occurs for all H2 -enriched flames with П shape.
Safety-Barrier Diagrams for Documenting Safety of Hydrogen Applications
Sep 2007
Publication
Safety-barrier diagrams have proven to be a useful tool in documenting the safety measures taken to prevent incidents and accidents in process industry. In Denmark they are used to inform the authorities and the nonexperts on safety relevant issues as safety-barrier diagrams are less complex compared to fault trees and are easy to understand. Internationally there is a growing interest in this concept with the use of so-called “bowtie” diagrams which are a special case of safety-barrier diagrams. Especially during the on-going introduction of new hydrogen technologies or applications as e.g. hydrogen refueling stations this technique is considered a valuable tool to support the communication with authorities and other stakeholders during the permitting process. Another advantage of safety-barrier diagrams is that there is a direct focus on those system elements that need to be subject to safety management in terms of design and installation operational use inspection and monitoring and maintenance. Safety-barrier diagrams support both quantitative and qualitative or deterministic approaches. The paper will describe the background and syntax of the methodology and thereafter the use of such diagrams for hydrogen technologies are demonstrated.
A Survey Among Experts of Safety Related to the Use of Hydrogen as an Energy Carrier
Sep 2005
Publication
Based on the increasing need of energy for the future and the related risks to the environments due to burning of fossils fuels hydrogen is seen as an efficient and application related clean energy carrier that may be derived from renewable energy sources. A variety of applications connected with production and use of hydrogen and the related risks have been identified and a survey has been conducted among a number of experts as an internet exercise for unveiling the potential lack of necessary knowledge in order to handle hydrogen in a safe way concerning the various applications. The main results concern hazardous situations related to release and explosions of hydrogen in confined and semi-confined areas tunnels and garages and mitigation of hazardous situations i.e. preventions of accidents and reduction of consequences from accidents happening anyway.
Hydrogen Fueling Standardization: Enabling ZEVs with "Same as Today" Fueling and FCEV Range and Safety
Oct 2015
Publication
Zero Emission Vehicles (ZEVs) are necessary to help reduce the emissions in the transportation sector which is responsible for 40% of overall greenhouse gas emissions. There are two types of ZEVs Battery Electric Vehicles (BEVs) and Fuel Cell Electric Vehicles (FCEVs) Commercial Success of BEVs has been challenging thus far also due to limited range and very long charging duration. FCEVs using H2 infrastructure with SAE J2601 and J2799 standards can be consistently fuelled in a safe manner fast and resulting in a range similar to conventional vehicles. Specifically fuelling with SAE J2601 with the SAE J2799 enables FCEVs to fill with hydrogen in 3-5 minutes and to achieve a high State of Charge (SOC) resulting in 300+ mile range without exceeding the safety storage limits. Standardized H2 therefore gives an advantage to the customer over electric charging. SAE created this H2 fuelling protocol based on modelling laboratory and field tests. These SAE standards enable the first generation of commercial FCEVs and H2 stations to achieve a customer acceptable fueling similar to today's experience. This report details the advantages of hydrogen and the validation of H2 fuelling for the SAE standards.
Balancing Wind-power Fluctuation Via Onsite Storage Under Uncertainty Power-to-hydrogen-to-power Versus Lithium Battery
Oct 2019
Publication
Imbalance costs caused by forecasting errors are considerable for grid-connected wind farms. In order to reduce such costs two onsite storage technologies i.e. power-to-hydrogen-to-power and lithium battery are investigated considering 14 uncertain technological and economic parameters. Probability density distributions of wind forecasting errors and power level are first considered to quantify the imbalance and excess wind power. Then robust optimal sizing of the onsite storage is performed under uncertainty to maximize wind-farm profit (the net present value). Global sensitivity analysis is further carried out for parameters prioritization to highlight the key influential parameters. The results show that the profit of power-to-hydrogen-to-power case is sensitive to the hydrogen price wind forecasting accuracy and hydrogen storage price. When hydrogen price ranges in (2 6) €/kg installing only electrolyzer can earn profits over 100 k€/MWWP in 9% scenarios with capacity below 250 kW/MWWP under high hydrogen price (over 4 €/kg); while installing only fuel cell can achieve such high profits only in 1.3% scenarios with capacity below 180 kW/MWWP. Installing both electrolyzer and fuel cell (only suggested in 22% scenarios) results in profits below 160 k€/MWWP and particularly 20% scenarios allow for a profit below 50 k€/MWWP due to the contradictory effects of wind forecasting error hydrogen and electricity price. For lithium battery investment cost is the single highly influential factor which should be reduced to 760 €/kWh. The battery capacity is limited to 88 kW h/MWWP. For profits over 100 k€/MWWP (in 3% scenarios) the battery should be with an investment cost below 510 €/kWh and a depth of discharge over 63%. The power-to-hydrogen-to-power case is more advantageous in terms of profitability reliability and utilization factor (full-load operating hours) while lithium battery is more helpful to reduce the lost wind and has less environmental impact considering current hydrogen market.
Estimation of Uncertainty in Risk Assessment of Hydrogen Applications
Sep 2011
Publication
Hydrogen technologies such as hydrogen fuelled vehicles and refuelling stations are being tested in practice in a number of projects (e.g. HyFleet-Cute and Whistler project) giving valuable information on the reliability and maintenance requirements. In order to establish refuelling stations the permitting authorities request qualitative and quantitative risk assessments to show the safety and acceptability in terms of failure frequencies and respective consequences. For new technologies not all statistical data can be established or are available in good quality causing assumptions and extrapolations to be made. Therefore the risk assessment results contain varying degrees of uncertainty as some components are well established while others are not. The paper describes a methodology to evaluate the degree of uncertainty in data for hydrogen applications based on the bias concept of the total probability and the NUSAP concept to quantify uncertainties of new not fully qualified hydrogen technologies and implications to risk management.
Risk Analysis of Complex Hydrogen Infrastructures
Oct 2015
Publication
Building a network of hydrogen refuelling stations is essential to develop the hydrogen economy within transport. Additional hydrogen is regarded a likely key component to store and convert back excess electrical power to secure future energy supply and to improve the quality of biomass-based fuels. Therefore future hydrogen supply and distribution chains will have to address several objectives. Such a complexity is a challenge for risk assessment and risk management of these chains because of the increasing interactions. Improved methods are needed to assess the supply chain as a whole. The method of “Functional modelling” is discussed in this paper. It will be shown how it could be a basis for other decision support methods for comprehensive risk and sustainability assessments.
A Barrier Analysis of a Generic Hydrogen Refuelling Station
Sep 2009
Publication
Any technical installation need appropriate safety barriers installed to prevent or mitigate any adverse effects concerning people property and environment. In this context a safety barrier is a series of elements each consisting of a technical system or human action that implement a planned barrier function to prevent control or mitigate the propagation of a condition or event into an undesired condition or event. This is also important for new technologies as hydrogen refuelling stations being operated at very high pressures up to 900bar. In order to establish the needed barriers a hazard identification of the installation has to be carried out to identify the possible hazardous events. In this study this identification was done using the generic layout of a future large hydrogen refuelling station that has been developed by the EU NoE HySafe. This was based on experiences with smaller scale refuelling stations that has been in operation for several years e.g. being used in the former CUTE and ECTOS projects. Using this approach the object of the study is to support activities to further improve the safety performance of future larger refuelling stations. This will again help to inform the authorities and the public to achieve a proper public awareness and to support building up a realistic risk and safety perception of the safety on such future refuelling stations. In the second step the hazardous events that may take place and the barriers installed to stop hazards and their escalation are analysed also using in-house developed software to model the barriers and to quantify their performance. The paper will present an overview and discuss the state-of-the-art of the barriers established in the generic refuelling station.
Power-to-fuels Via Solid-oxide Electrolyzer: Operating Window and Techno-economics
May 2019
Publication
Power-to-fuel systems via solid-oxide electrolysis are promising for storing excess renewable electricity by efficient electrolysis of steam (or co-electrolysis of steam and CO2) into hydrogen (or syngas) which can be further converted into synthetic fuels with plant-wise thermal integration. Electrolysis stack performance and durability determine the system design performance and long-term operating strategy; thus solid-oxide electrolyzer based power-to-fuels were investigated from the stack to system levels. At the stack level the data from a 6000-h stack testing under laboratory isothermal conditions were used to calibrate a quasi-2D model which enables to predict practical isothermal stack performance with reasonable accuracy. Feasible stack operating windows meeting various design specifications (e.g. specific syngas composition) were further generated to support the selection of operating points. At the system level with the chosen similar stack operating points various power-to-fuel systems including power-to-hydrogen power-to-methane power-to-methanol (dimethyl ether) and power-to-gasoline were compared techno-economically considering system-level heat integration. Several operating strategies of the stack were compared to address the increase in stack temperature due to degradation. The modeling results show that the system efficiency for producing H2 methane methanol/dimethyl ether and gasoline decreases sequentially from 94% (power-to-H2) to 64% (power-to-gasoline) based on a higher heating value. Co-electrolysis which allows better heat integration can improve the efficiency of the systems with less exothermic fuel-synthesis processes (e.g. methanol/dimethyl ether) but offers limited advantages for power-to-methane and power-to-gasoline systems. In a likely future scenario where the growing amount of electricity from renewable sources results in increasing periods of a negative electricity price solid oxide electrolyser based power-to-fuel systems are highly suitable for levelling the price fluctuations in an economic way.
Safety Aspects of Land-Use Planning Scenarios for a Future Infrastructure with Hydrogen Re-Fuelling Stations
Sep 2005
Publication
Hydrogen is currently gaining much attention as a possible future substitute for oil in the transport sector. Hydrogen is not a primary energy source but can be produced from other sources of energy. A future hydrogen economy will need the establishment of new infrastructures for producing storing distributing dispensing and using hydrogen. Hydrogen can be produced in large-scale centralized facilities or in smaller scale on-site systems. Large-scale production requires distribution in pipelines or trucks. A major challenge is to plan the new infrastructures to approach an even safer society regarding safe use of hydrogen. The paper will on the basis of some scenarios for hydrogen deployment highlight and evaluate safety aspects related to future hydrogen economy infrastructures.
The Role of Lock-in Mechanisms in Transition Processes: The Case of Energy for Road Transport
Jul 2015
Publication
This paper revisits the theoretical concepts of lock-in mechanisms to analyse transition processes in energy production and road transportation in the Nordic countries focussing on three technology platforms: advanced biofuels e-mobility and hydrogen and fuel cell electrical vehicles. The paper is based on a comparative analysis of case studies.<br/>The main lock-in mechanisms analysed are learning effects economies of scale economies of scope network externalities informational increasing returns technological interrelatedness collective action institutional learning effects and the differentiation of power.<br/>We show that very different path dependencies have been reinforced by the lock-in mechanisms. Hence the characteristics of existing regimes set the preconditions for the development of new transition pathways. The incumbent socio-technical regime is not just fossil-based but may also include mature niches specialised in the exploitation of renewable sources. This implies a need to distinguish between lock-in mechanisms favouring the old fossil-based regime well-established (mature) renewable energy niches or new pathways.
Market Segmentation of Domestic and Commercial Natural Gas Appliances
Jan 2021
Publication
The main goal of the project is to enable the wide adoption of H2NG (hydrogen in natural gas) blends by closing knowledge gaps regarding technical impacts on residential and commercial gas appliances. The project consortium will identify and recommend appropriate codes and standards that should be adapted to answer the needs and develop a strategy for addressing the challenges for new and existing appliances.<br/>This deliverable on market segmentation is part of work package 2 and provides a quantitative segmentation of the gas appliance market in terms of appliance population numbers. It therefore prepares the project partners to perform the subsequent selection of the most representative product types to be tested in the laboratories of the THyGA partners.<br/>The classification is developed to categorise appliances installed in the field based on available statistics calculation methods and estimations. As a result appliance populations are provided for each technology segment that draw a representative picture of the installed end-use appliances within the European Union in 2020.
Uncertainties in Risk Assessment of Hydrogen Discharges from Pressurized Storage Vessels Ranging from Cryogenic to Ambient Temperatures
Sep 2013
Publication
Evaluations of the uncertainties resulting from risk assessment tools to predict releases from the various hydrogen storage types are important to support risk informed safety management. The tools have to predict releases from a wide range of storage pressures (up to 80 MPa) and temperatures (at 20K) e.g. the cryogenic compressed gas storage covers pressures up to 35 MPa and temperatures between 33K and 338 K. Accurate calculations of high pressure releases require real gas EOS. This paper compares a number of EOS to predict hydrogen properties typical in different storage types. The vessel dynamics are modelled to evaluate the performance of various EOS to predict exit pressures and temperatures. The results are compared to experimental data and results from CFD calculations.
Development of a Generalized Integral Jet Model
Sep 2017
Publication
Integral type models to describe stationary plumes and jets in cross-flows (wind) have been developed since about 1970. These models are widely used for risk analysis to describe the consequences of many different scenarios. Alternatively CFD codes are being applied but computational requirements still limit the number of scenarios that can be dealt with using CFD only. The integral models however are not suited to handle transient releases such as releases from pressurized equipment where the initially high release rate decreases rapidly with time. Further on gas ignition a second model is needed to describe the rapid combustion of the flammable part of the plume (flash fire) and a third model has to be applied for the remaining jet fire. The objective of this paper is to describe the first steps of the development of an integral-type model describing the transient development and decay of a jet of flammable gas after a release from a pressure container. The intention is to transfer the stationary models to a fully transient model capable to predict the maximum extension of short-duration high pressure jets. The model development is supported by conducting a set of transient ignited and unignited spontaneous releases at initial pressures between 25bar and 400bar. These data forms the basis for the presented model development approach.
Modelling and Experimental Analysis of a Polymer Electrolyte Membrane Water Electrolysis Cell at Different Operating Temperatures
Nov 2018
Publication
In this paper a simplified model of a Polymer Electrolyte Membrane (PEM) water electrolysis cell is presented and compared with experimental data at 60 ◦C and 80 ◦C. The model utilizes the same modelling approach used in previous work where the electrolyzer cell is divided in four subsections: cathode anode membrane and voltage. The model of the electrodes includes key electrochemical reactions and gas transport mechanism (i.e. H2 O2 and H2O) whereas the model of the membrane includes physical mechanisms such as water diffusion electro osmotic drag and hydraulic pressure. Voltage was modelled including main overpotentials (i.e. activation ohmic concentration). First and second law efficiencies were defined. Key empirical parameters depending on temperature were identified in the activation and ohmic overpotentials. The electrodes reference exchange current densities and change transfer coefficients were related to activation overpotentials whereas hydrogen ion diffusion to Ohmic overvoltages. These model parameters were empirically fitted so that polarization curve obtained by the model predicted well the voltage at different current found by the experimental results. Finally from the efficiency calculation it was shown that at low current densities the electrolyzer cell absorbs heat from the surroundings. The model is not able to describe the transients involved during the cell electrochemical reactions however these processes are assumed relatively fast. For this reason the model can be implemented in system dynamic modelling for hydrogen production and storage where components dynamic is generally slower compared to the cell electrochemical reactions dynamics.
Complex Hydrides for Hydrogen Storage – New Perspectives
Apr 2014
Publication
Since the 1970s hydrogen has been considered as a possible energy carrier for the storage of renewable energy. The main focus has been on addressing the ultimate challenge: developing an environmentally friendly successor for gasoline. This very ambitious goal has not yet been fully reached as discussed in this review but a range of new lightweight hydrogen-containing materials has been discovered with fascinating properties. State-of-the-art and future perspectives for hydrogen-containing solids will be discussed with a focus on metal borohydrides which reveal significant structural flexibility and may have a range of new interesting properties combined with very high hydrogen densities.
No more items...