Skip to content
1900

Optimal Operation of a Hydrogen Storage and Fuel Cell Coupled Integrated Energy System

Abstract

Integrated energy systems have become an area of interest as with growing energy demand globally, means of producing sustainable energy from flexible sources is key to meet future energy demands while keeping carbon emissions low. Hydrogen is a potential solution for providing flexibility in the future energy mix as it does not emit harmful gases when used as an energy source. In this paper, an integrated energy system including hydrogen as an energy vector and hydrogen storage is studied. The system is used to assess the behaviour of a hydrogen production and storage system under different renewable energy generation profiles. Two case studies are considered: a high renewable energy generation scenario and a low renewable energy generation scenario. These provide an understanding of how different levels of renewable penetration may affect the operation of an electrolyser and a fuel cell against an electricity import/export pricing regime. The mathematical model of the system under study is represented using the energy hub approach, with system optimisation through linear programming conducted via MATLAB to minimise the total operational cost. The work undertaken showcases the unique interactions the fuel cell has with the hydrogen storage system in terms of minimising grid electricity import and exporting stored hydrogen as electricity back to the grid when export prices are competitive.

Funding source: The research presented in this paper was supported in part by FLEXIS—a project part-funded by the European Regional Development Fund (ERDF) through the Welsh Government.
Countries: United Kingdom
Loading

Article metrics loading...

/content/journal3046
2021-03-22
2024-12-03
/content/journal3046
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error