1900

Energy System Requirements of Fossil-free Steelmaking using Hydrogen Direct Reduction

Abstract

The iron and steel industry is one of the world’s largest industrial emitters of greenhouse gases. One promising option for decarbonising the industry is hydrogen direct reduction of iron (H-DR) with electric arc furnace (EAF) steelmaking, powered by zero carbon electricity. However, to date, little attention has been given to the energy system requirements of adopting such a highly energy-intensive process. This study integrates a newly developed long-term energy system planning tool, with a thermodynamic process model of H-DR/EAF steelmaking developed by Vogl et al. (2018), to assess the optimal combination of generation and storage technologies needed to provide a reliable supply of electricity and hydrogen. The modelling tools can be applied to any country or region and their use is demonstrated here by application to the UK iron and steel industry as a case study. It is found that the optimal energy system comprises 1.3 GW of electrolysers, 3 GW of wind power, 2.5 GW of solar, 60 MW of combined cycle gas with carbon capture, 600 GWh/600 MW of hydrogen storage, and 30 GWh/130 MW of compressed air energy storage. The hydrogen storage requirements of the industry can be significantly reduced by maintaining some dispatchable generation, for example from 600 GWh with no restriction on dispatchable generation to 140 GWh if 20% of electricity demand is met using dispatchable generation. The marginal abatement costs of a switch to hydrogen-based steelmaking are projected to be less than carbon price forecasts within 5–10 years.

Funding source: The research presented in this article formed part of the project ‘Complete decarbonisation of the UK steel industry’, funded through the Centre for Research in Energy Demand Solutions (CREDS). CREDS is funded by UK Research and Innovation, grant agreement number EP/ R035288/1.
Related subjects: Applications & Pathways
Countries: United Kingdom
Loading

Article metrics loading...

/content/journal3063
2021-05-26
2022-11-30
http://instance.metastore.ingenta.com/content/journal3063
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error