Skip to content

Large-Scale Hydrogen Production Systems Using Marine Renewable Energies: State-of-the-Art


To achieve a more ecologically friendly energy transition by the year 2050 under the European “green” accord, hydrogen has recently gained significant scientific interest due to its efficiency as an energy carrier. This paper focuses on large-scale hydrogen production systems based on marine renewable-energy-based wind turbines and tidal turbines. The paper reviews the different technologies of hydrogen production using water electrolyzers, energy storage unit base hydrogen vectors, and fuel cells (FC). The focus is on large-scale hydrogen production systems using marine renewable energies. This study compares electrolyzers, energy storage units, and FC technologies, with the main factors considered being cost, sustainability, and efficiency. Furthermore, a review of aging models of electrolyzers and FCs based on electrical circuit models is drawn from the literature and presented, including characterization methods of the model components and the parameters extraction methods, using a dynamic current profile. In addition, industrial projects for producing hydrogen from renewable energies that have already been completed or are now in progress are examined. The paper is concluded through a summary of recent hydrogen production and energy storage advances, as well as some applications. Perspectives on enhancing the sustainability and efficiency of hydrogen production systems are also proposed and discussed. This paper provides a review of behavioral aging models of electrolyzers and FCs when integrated into hydrogen production systems, as this is crucial for their successful deployment in an ever-changing energy context. We also review the EU’s potential for renewable energy analysis. In summary, this study provides valuable information for research and industry stakeholders aiming to promote a sustainable and environmentally friendly energy transition.

Related subjects: Production & Supply Chain
Countries: Canada ; France

Article metrics loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error