Skip to content
1900

Near-term Infrastructure Rollout and Investment Strategies for Net-zero Hydrogen Supply Chains

Abstract

Low-carbon hydrogen plays a key role in European industrial decarbonization strategies. This work investigates the cost-optimal planning of European low-carbon hydrogen supply chains in the near term (2025–2035), comparing several hydrogen production technologies and considering multiple spatial scales. We focus on mature hydrogen production technologies: steam methane reforming of natural gas, biomethane reforming, biomass gasification, and water electrolysis. The analysis includes carbon capture and storage for natural gas and biomass-derived hydrogen. We formulate and solve a linear optimization model that determines the costoptimal type, size, and location of hydrogen production and transport technologies in compliance with selected carbon emission targets, including the EU fit for 55 target and an ambitious net-zero emissions target for 2035. Existing steam methane reforming capacities are considered, and optimal carbon and biomass networks are designed. Findings identify biomass-based hydrogen production as the most cost-efficient hydrogen technology. Carbon capture and storage is installed to achieve net-zero carbon emissions, while electrolysis remains costdisadvantageous and is deployed on a limited scale across all considered sensitivity scenarios. Our analysis highlights the importance of spatial resolution, revealing that national perspectives underestimate costs by neglecting domestic transport needs and regional resource constraints, emphasizing the necessity for highly decarbonized infrastructure designs aligned with renewable resource availabilities.

Funding source: The research published in this study was carried out with the support of the Swiss Federal Office of Energy (SFOE) as part of the SWEET PATHFNDR project.
Related subjects: Policy & Socio-Economics
Loading

Article metrics loading...

/content/journal5503
2024-02-14
2024-05-03
/content/journal5503
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error