Synergizing Gas and Electric Systems Using Power-to-Hydrogen: Integrated Solutions for Clean and Sustainable Energy Networks
Abstract
The rapid growth in natural gas consumption by gas-fired generators and the emergence of power-to-hydrogen (P2H) technology have increased the interdependency of natural gas and power systems, presenting new challenges to energy system operators due to the heterogeneous uncertainties associated with power loads, renewable energy sources (RESs), and gas loads. These uncertainties can easily spread from one infrastructure to another, increasing the risk of cascading outages. Given the erratic nature of RESs, P2H technology provides a valuable solution for large-scale energy storage systems, crucial for the transition to economic, clean, and secure energy systems. This paper proposes a new approach for the co-optimized operation of gas and electric power systems, aiming to reduce combined operating costs by 10–15% without jeopardizing gas and energy supplies to customers. A mixed integer non-linear programming (MINLP) model is developed for the optimal day-ahead operation of these integrated systems, with a case study involving the IEEE 24-bus power system and a 20-node natural gas system. Simulation results demonstrate the model’s effectiveness in minimizing total costs by up to 20% and significantly reducing renewable energy curtailment by over 50%. The proposed approach supports UN Sustainable Development Goals by ensuring sustainable energy (SDG 7), fostering innovation and resilient infrastructure (SDG 9), enhancing energy efficiency for resilient cities (SDG 11), promoting responsible consumption (SDG 12), contributing to climate action (SDG 13), and strengthening partnerships (SDG 17). It promotes clean energy, technological innovation, resilient infrastructure, efficient resource use, and climate action, supporting the transition to sustainable energy systems.