United Arab Emirates
World Energy Transitions Outlook: 1.5°C Pathway
Mar 2021
Publication
Dolf Gielen,
Ricardo Gorini,
Rodrigo Leme,
Gayathri Prakash,
Nicholas Wagner,
Luis Janeiro,
Sean Collins,
Maisarah Kadir,
Elisa Asmelash,
Rabia Ferroukhi,
Ulrike Lehr,
Xavier Garcia Casals,
Diala Hawila,
Bishal Parajuli,
Elizabeth Press,
Paul Durrant,
Seungwoo Kang,
Martina Lyons,
Carlos Ruiz,
Trish Mkutchwa,
Emanuele Taibi,
Herib Blanco,
Francisco Boshell,
Arina Anise,
Elena Ocenic,
Roland Roesch,
Gabriel Castellanos,
Gayathri Nair,
Barbara Jinks,
Asami Miketa,
Michael Taylor,
Costanza Strinati,
Michael Renner and
Deger Saygin
The World Energy Transitions Outlook preview outlines a pathway for the world to achieve the Paris Agreement goals and halt the pace of climate change by transforming the global energy landscape. This preview presents options to limit global temperature rise to 1.5°C and bring CO2 emissions closer to net zero by mid-century offering high-level insights on technology choices investment needs and the socio-economic contexts of achieving a sustainable resilient and inclusive energy future.
Meeting CO2 reduction targets by 2050 will require a combination of: technology and innovation to advance the energy transition and improve carbon management; supportive and proactive policies; associated job creation and socio-economic improvements; and international co-operation to guarantee energy availability and access.
Among key findings:
This preview identifies opportunities to support informed policy and decision making to establish a new global energy system. Following this preview and aligned with the UN High-Level Dialogue process the International Renewable Energy Agency (IRENA) will release the full report which will provide a comprehensive vision and accompanying policy measures for the transition.
Meeting CO2 reduction targets by 2050 will require a combination of: technology and innovation to advance the energy transition and improve carbon management; supportive and proactive policies; associated job creation and socio-economic improvements; and international co-operation to guarantee energy availability and access.
Among key findings:
- Proven technologies for a net-zero energy system already largely exist today. Renewable power green hydrogen and modern bioenergy will dominate the world of energy of the future.
- A combination of technologies is needed to keep us on a 1.5°C climate pathway. These include increasingly efficient energy production to ensure economic growth; decarbonised power systems that are dominated by renewables; increased use of electricity in buildings industry and transport to support decarbonisation; expanded production and use of green hydrogen synthetic fuels and feedstocks; and targeted use of sustainably sourced biomass.
- In anticipation of the coming energy transition financial markets and investors are already directing capital away from fossil fuels and towards other energy technologies including renewables.
- Energy transition investment will have to increase by 30% over planned investment to a total of USD 131 trillion between now and 2050 corresponding to USD 4.4 trillion on average every year.
- National social and economic policies will play fundamental roles in delivering the energy transition at the speed required to restrict global warming to 1.5°C.
This preview identifies opportunities to support informed policy and decision making to establish a new global energy system. Following this preview and aligned with the UN High-Level Dialogue process the International Renewable Energy Agency (IRENA) will release the full report which will provide a comprehensive vision and accompanying policy measures for the transition.
Renewable Energy Policies in a Time of Transition: Heating and Cooling
Nov 2020
Publication
Heating and cooling accounts for almost half of global energy consumption. With most of this relying fossil fuels however it contributes heavily to greenhouse gas emissions and air pollution. In parts of the world lacking modern energy access meanwhile inefficient biomass use for cooking also harms people’s health damages the environment and reduces social well-being.
The transition to renewable-based energy-efficient heating and cooling could follow several possible pathways depending on energy demand resource availability and the needs and priorities of each country or region. Broad options include electrification with renewable power renewable-based gases (including “green” hydrogen) sustainable bioenergy use and the direct use of solar and geothermal heat.
This report developed jointly by the International Renewable Energy Agency (IRENA) the International Energy Agency (IEA) and the Renewable Energy Policy Network for the 21st Century (REN21) outlines the infrastructure and policies needed with each transition pathway. This edition focused on renewable-based heating and cooling follows a broader initial study Renewable Energy Policies in a Time of Transition (IRENA IEA and REN21 2018).
The shift to renewables for heating and cooling requires enabling infrastructure (e.g. gas grids district heating and cooling networks) as well as various combinations of deployment integrating and enabling policies. The policy framework can demonstrate a country’s commitment to the energy transition level the playing field with fossil fuels and create the necessary enabling conditions to attract investments.
Along with highlighting country experiences and best practices the study identifies barriers and highlights policy options for renewable heating and cooling.
Key recommendations include:
The transition to renewable-based energy-efficient heating and cooling could follow several possible pathways depending on energy demand resource availability and the needs and priorities of each country or region. Broad options include electrification with renewable power renewable-based gases (including “green” hydrogen) sustainable bioenergy use and the direct use of solar and geothermal heat.
This report developed jointly by the International Renewable Energy Agency (IRENA) the International Energy Agency (IEA) and the Renewable Energy Policy Network for the 21st Century (REN21) outlines the infrastructure and policies needed with each transition pathway. This edition focused on renewable-based heating and cooling follows a broader initial study Renewable Energy Policies in a Time of Transition (IRENA IEA and REN21 2018).
The shift to renewables for heating and cooling requires enabling infrastructure (e.g. gas grids district heating and cooling networks) as well as various combinations of deployment integrating and enabling policies. The policy framework can demonstrate a country’s commitment to the energy transition level the playing field with fossil fuels and create the necessary enabling conditions to attract investments.
Along with highlighting country experiences and best practices the study identifies barriers and highlights policy options for renewable heating and cooling.
Key recommendations include:
- Setting specific targets and developing an integrated long-term plan for the decarbonisation of heating and cooling in all end-uses including buildings industry and cooking and productive uses in areas with limited energy access.
- Creating a level playing field by phasing out fossil-fuel subsidies and introducing other fiscal policies to internalise environmental and socio-economic costs.
- Combining the electrification of heating and cooling with increasingly cost-competitive renewable power generation scaling up solar and wind use and boosting system flexibility via energy storage heat pumps and efficient electric appliances.
- Harnessing existing gas networks to accommodate renewable gases such as biogas and green hydrogen.
- Introducing standards certification and testing policies to promote the sustainable use of biomass combining efficient systems and bioenergy solutions such as pellets briquettes bioethanol or anaerobic digestion.
- Reducing investment risks for geothermal exploration and scaling up direct use of geothermal heat.
- Improving district heating and cooling networks through energy efficiency measures and the integration of low-temperature solar thermal geothermal and other renewable-based heat sources.
- Supporting clean cooking and introducing renewable-based food drying in areas lacking energy access with a combination of financing mechanisms capacity building and quality standards aimed at improving livelihoods and maximising socio-economic benefits.
Progress Report 2016: Meeting Carbon Budgets
Jun 2016
Publication
This is the CCC’s eighth annual report on the UK’s progress in meeting carbon budgets.
The report shows that greenhouse gas emissions have fallen rapidly in the UK power sector but that progress has stalled in other sectors such as:
The report also outlines the Committee’s view of key criteria for the government’s ’emissions reduction plan’ published later in 2017
The report shows that greenhouse gas emissions have fallen rapidly in the UK power sector but that progress has stalled in other sectors such as:
- heating in buildings
- transport
- industry
- agriculture
The report also outlines the Committee’s view of key criteria for the government’s ’emissions reduction plan’ published later in 2017
Hydrogen: A Reviewable Energy Perspective
Sep 2019
Publication
Hydrogen has emerged as an important part of the clean energy mix needed to ensure a sustainable future. Falling costs for hydrogen produced with renewable energy combined with the urgency of cutting greenhouse-gas emissions has given clean hydrogen unprecedented political and business momentum.
This paper from the International Renewable Energy Agency (IRENA) examines the potential of hydrogen fuel for hard-to-decarbonise energy uses including energy-intensive industries trucks aviation shipping and heating applications. But the decarbonisation impact depends on how hydrogen is produced. Current and future sourcing options can be divided into grey (fossil fuel-based) blue (fossil fuel-based production with carbon capture utilisation and storage) and green (renewables-based) hydrogen. Green hydrogen produced through renewable-powered electrolysis is projected to grow rapidly in the coming years.
Among other findings:
Important synergies exist between hydrogen and renewable energy. Hydrogen can boost renewable electricity market growth and broaden the reach of renewable solutions.
Trade of energy-intensive commodities produced with hydrogen including “e-fuels” could spur faster uptake or renewables and bring wider economic benefits.
This paper from the International Renewable Energy Agency (IRENA) examines the potential of hydrogen fuel for hard-to-decarbonise energy uses including energy-intensive industries trucks aviation shipping and heating applications. But the decarbonisation impact depends on how hydrogen is produced. Current and future sourcing options can be divided into grey (fossil fuel-based) blue (fossil fuel-based production with carbon capture utilisation and storage) and green (renewables-based) hydrogen. Green hydrogen produced through renewable-powered electrolysis is projected to grow rapidly in the coming years.
Among other findings:
Important synergies exist between hydrogen and renewable energy. Hydrogen can boost renewable electricity market growth and broaden the reach of renewable solutions.
- Electrolysers can add demand-side flexibility. In advanced European energy markets electrolysers are growing from megawatt to gigawatt scale.
- Blue hydrogen is not inherently carbon free. This type of production requires carbon-dioxide (CO2) monitoring verification and certification.
- Synergies may exist between green and blue hydrogen deployment given the chance for economies of scale in hydrogen use or logistics.
- A hydrogen-based energy transition will not happen overnight. Hydrogen use is likely to catch on for specific target applications. The need for new supply infrastructure could limit hydrogen use to countries adopting this strategy.
- Dedicated hydrogen pipelines have existed for decades and could be refurbished along with existing gas pipelines. The implications of replacing gas abruptly or changing mixtures gradually should be further explored.
Trade of energy-intensive commodities produced with hydrogen including “e-fuels” could spur faster uptake or renewables and bring wider economic benefits.
The Renewable Energy Transition in Africa: Powering Access, Resilience and Prosperity
Mar 2021
Publication
A renewables-based energy transition promises to deliver vast socio-economic benefits to countries across Africa improving energy access creating jobs and boosting energy security. To realise these benefits African countries have an opportunity to leapfrog fossil fuel technologies to a more sustainable climate-friendly power strategy aligned with the Paris Agreement and low-carbon growth.<br/><br/>The Renewable Energy Transition in Africa jointly prepared by Germany's KfW Development Bank Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) and the International Renewable Energy Agency (IRENA) on behalf of the German Federal Ministry for Economic Cooperation and Development (BMZ) explores how African countries can achieve universal energy access within the 2030 Agenda timeframe and identifies four areas of action:<br/><br/>Promote access to energy;<br/>De-risk and promoting private sector investments;<br/>Strengthen and modernise the grid;<br/>Support systemic innovation.<br/>The study also explores the transformational potential of the electricity sector in five Africa countries: Ghana Ivory Coast Morocco Rwanda and South Africa. Specifically developed by IRENA country case studies show the real-life applicability of power sector transformation and demonstrates how countries can:<br/><br/>Take advantage of the abundancy and competitiveness of renewables;<br/>Align ambitious renewable targets in energy and climate plans;<br/>Continue supporting the development of regional markets;<br/>Leverage renewables and distributed energy resources to achieve universal energy access;<br/>Develop tailored power sector transformation plans based on a systemic innovation approach;<br/>Build on policy frameworks for just and inclusive transitions.
Hydrogen from Renewable Power
Sep 2018
Publication
As the world strives to cut carbon emissions electric power from renewables has emerged as a vital energy source. Yet transport and industry will still require combustible fuels for many purposes. Such needs could be met with hydrogen which itself can be produced using renewable power.
Hydrogen provides high-grade heat helping to meet a range of energy needs that would be difficult to address through direct electrification. This could make hydrogen the missing link in the transformation of the global energy system.
Key sectors for renewable-based hydrogen uptake include:
Electrolysers – which split hydrogen and oxygen – can make power systems more flexible helping to integrate high shares of variable renewables. Power consumption for electrolysis can be adjusted to follow actual solar and wind output while producing the hydrogen needed for transport industry or injection into the gas grid.
In the long run hydrogen could become a key element in 100% renewable energy systems. With technologies maturing actual scale-up should yield major cost reductions. The right policy and regulatory framework however remains crucial to stimulate private investment in in hydrogen production in the first place.
Hydrogen provides high-grade heat helping to meet a range of energy needs that would be difficult to address through direct electrification. This could make hydrogen the missing link in the transformation of the global energy system.
Key sectors for renewable-based hydrogen uptake include:
- Industry where it could replace fossil-based feedstocks including natural gas in high-emission applications.
- Buildings and power where it could be mixed with natural gas or combined with industrial carbon dioxide (CO2) emissions to produce syngas.
- Transport where it can provide low-carbon mobility through fuel-cell electric vehicles.
Electrolysers – which split hydrogen and oxygen – can make power systems more flexible helping to integrate high shares of variable renewables. Power consumption for electrolysis can be adjusted to follow actual solar and wind output while producing the hydrogen needed for transport industry or injection into the gas grid.
In the long run hydrogen could become a key element in 100% renewable energy systems. With technologies maturing actual scale-up should yield major cost reductions. The right policy and regulatory framework however remains crucial to stimulate private investment in in hydrogen production in the first place.
Environmental Sustainability of Renewable Hydrogen in Comparison with Conventional Cooking Fuels
Jun 2018
Publication
Hydrogen could be used as a ‘cleaner’ cooking fuel particularly in communities that rely on biomass and fossil fuels to reduce local pollution and related health effects. However hydrogen must be produced using sustainable feedstocks and energy sources to ensure that local impacts are not reduced at the expense of other impacts generated elsewhere in the life cycle. To this end this paper evaluates life cycle environmental impacts of renewable hydrogen produced in a proton-exchange membrane electrolyser using solar energy. The aim of the study is to find out if hydrogen produced in this system and used as a cooking fuel is environmentally sustainable in comparison with conventional cooking fuels typically used in developing countries such as liquefied petroleum gas (LPG) charcoal and firewood. The results suggest that hydrogen would reduce the climate change impact by 2.5–14 times to 0.04 kg CO2 eq./MJ compared to firewood (0.10 kg CO2 eq./MJ) and LPG (0.57 kg CO2 eq./MJ). Some other impacts would also be lower by 6%–35 times including depletion of fossil fuels summer smog and health effects from emissions of particulates both locally and across the rest of the life cycle. However some other impacts would increase by 6%–6.7 times such as depletion of metals and freshwater and marine ecotoxicity. These are mainly due to the solar photovoltaic panels used to generate power for the electrolyser. In terms of the local impacts the study suggests that hydrogen would reduce local pollution and related health impacts by 8%–35 times. However LPG is still environmentally a better option than hydrogen for most of the impacts both at the point of use and on a life cycle basis.
Study Navigating the Way to a Renewable Future – Solutions to Decarbonise Shipping
Sep 2019
Publication
On average the shipping sector is responsible for 3% of annual global green-house gas emissions on a CO2-equivalent basis. International shipping represents around 9% of the global emissions associated with the transport sector.<br/>This report from the International Renewable Energy Agency (IRENA) explores the impact of maritime shipping on CO2 emissions the structure of the shipping sector and key areas that need to be addressed to reduce the sector’s carbon footprint.<br/>There is no clear-cut path to decarbonisation. Cutting CO2 emissions in half is therefore likely to require a combination of approaches including the use of alternative fuels upgrading of onshore infrastructure and reducing fuel demand by improving operational performance the report finds.<br/>The shipping sector is strategically important for global efforts against climate change and could be crucial in the long-term shift to a zero-carbon economy. Large-scale deployment of low-carbon fuel infrastructure for shipping could also help to build the necessary momentum to decarbonise other sectors.
Fostering a Blue Economy: Offshore Renewable Energy
Dec 2020
Publication
Offshore renewable energy – including offshore wind and solar power as well as emerging ocean energy technologies – could support sustainable long-term development and drive a vibrant blue economy. For countries and communities around the world offshore renewables can provide reliable stable electricity as well as support water desalination and aquaculture.
This report from the International Renewable Energy Agency (IRENA) considers the status and prospects of offshore renewable sources and recommends key actions to accelerate their uptake.
The development of renewable sources and technologies at sea promises to spur new industries and create jobs in line with the global energy transition. Offshore wind towers with either fixed or floating foundations and floating solar photovoltaic (PV) arrays offer clear technological and logistical synergies with the existing offshore oil and gas industry.
Offshore renewables could provide clean power and ensure energy security for small island developing states (SIDS) and many of the least-developed countries (LDCs).
Among other findings:
This report from the International Renewable Energy Agency (IRENA) considers the status and prospects of offshore renewable sources and recommends key actions to accelerate their uptake.
The development of renewable sources and technologies at sea promises to spur new industries and create jobs in line with the global energy transition. Offshore wind towers with either fixed or floating foundations and floating solar photovoltaic (PV) arrays offer clear technological and logistical synergies with the existing offshore oil and gas industry.
Offshore renewables could provide clean power and ensure energy security for small island developing states (SIDS) and many of the least-developed countries (LDCs).
Among other findings:
- The predictability of power generation from ocean energy technologies complements the variable character solar PV and wind.
- Desalination of seawater using renewable energy sources – including solar and wind power but also direct solar and geothermal heat – can further enhance the sustainable blue economy.
- Renewable-based shipping powered with advanced biofuels hydrogen or synthetic fuels as alternatives to oil offer further synergies with offshore renewable energy.
- Islands and coastal territories could adopt renewable-based electric propulsion for short-distance (< 100 km) sea transport.
- Two reports released concurrently examine the potential for offshore renewables:
Editorial—Special Issue “Catalysis for Energy Production”
Jun 2021
Publication
The rapid increase in anthropogenic greenhouse gas concentrations in the last several decades means that the effects of climate change are fast becoming the familiar horsemen of a planetary apocalypse. Catalysis one of the pillars of the chemical and petrochemical industries will play a critical role in the effort to reduce the flow of greenhouse gases into the atmosphere. This Special Issue is timely as it provides a collection of high-quality manuscripts in a diverse range of topics which include the production of green hydrogen via water electrolysis the steam reforming of ethanol propane or glycerol the dry reforming of methane and the autothermal reforming of diesel surrogate fuel. The topic of the transformation of biomass waste to chemicals is also well represented as is the tackling of CO2 emissions via novel utilization technologies. The Editors are grateful to all authors for their valuable contributions and confident that this Special Issue will prove valuable to scholars university professors and students alike.
Global Energy Transformation: A Roadmap to 2050
Apr 2019
Publication
Dolf Gielen,
Ricardo Gorini,
Nicholas Wagner,
Rodrigo Leme,
Laura Gutierrez,
Gayathri Prakash,
Elisa Asmelash,
Luis Janeiro,
Giacomo Gallina,
Guilia Vale,
Lorenzo Sani,
Xavier Garcia Casals,
Rabia Ferroukhi,
Bishal Parajuli,
Jinlei Feng,
Eva Alexandri,
Unnada Chewpreecha,
Mary Goldman,
Sophie Heald,
Jon Stenning,
Hector Pollitt,
Celia García-Baños and
Michael Renner
Increased use of renewable energy combined with intensified electrification could prove decisive for the world to meet key climate goals by 2050. This study from the International Renewable Energy Agency (IRENA) highlights immediately deployable cost-effective options for countries to fulfil climate commitments and limit the rise of global temperatures. The envisaged energy transformation would also reduce net costs and bring significant socio-economic benefits such as increased economic growth job creation and overall welfare gains.<br/>The report – the second under the Global Energy Transformation banner – expands IRENA’s comprehensive roadmap which examines technology pathways and policy implications to ensure a sustainable energy future. Ramping up electricity to over half of the global energy mix (up from one-fifth currently) in combination with renewables would reduce the use of fossil fuels responsible for most greenhouse-gas emissions.
Hydrogen Production by Steam Reforming of DME in a Large Scale CFB Reactor. Part I: Computational Model and Predictions
Oct 2015
Publication
This study presents a computational fluid dynamic (CFD) study of Dimethyl Ether steam reforming (DME-SR) in a large scale Circulating Fluidized Bed (CFB) reactor. The CFD model is based on Eulerian–Eulerian dispersed flow and solved using commercial software (ANSYS FLUENT). The DME-SR reactions scheme and kinetics in the presence of a bifunctional catalyst of CuO/ZnO/Al2O3+ZSM-5 were incorporated in the model using in-house developed user-defined function. The model was validated by comparing the predictions with experimental data from the literature. The results revealed for the first time detailed CFB reactor hydrodynamics gas residence time temperature distribution and product gas composition at a selected operating condition of 300 °C and steam to DME mass ratio of 3 (molar ratio of 7.62). The spatial variation in the gas species concentrations suggests the existence of three distinct reaction zones but limited temperature variations. The DME conversion and hydrogen yield were found to be 87% and 59% respectively resulting in a product gas consisting of 72 mol% hydrogen. In part II of this study the model presented here will be used to optimize the reactor design and study the effect of operating conditions on the reactor performance and products.
Effect of Bipolar Plate Material on Proton Exchange Membrane Fuel Cell Performance
Mar 2022
Publication
Commercialization of proton exchange membrane fuel cells can only materials provided its performance is closely related to existing technologies useful in commercial application. Other critical parameters like the utilization of cheaper materials should be taken into account during the manufacturing of the cell. A key component in the cell that has direct correlation to the cell perfor‐ mance is the flow plate. The weight coupled with cost of the cell revolves around the flow plate used in the manufacturing of the cell. This study explores materials ideal for the manufacturing of fuel cells in order to improve the overall cell performance. The investigation highlights the critical impact of varying materials used in the manufacturing of flow plates for PEM fuel cells. Stainless steel (SS) aluminium (Al) and copper (Cu) were the materials considered. The flow plate designs considered were serpentine and open pore cellular foam channel. Machine learning using python for the validation of the results with Linear regression Ridge regression and Polynomial regression algorithm was carried out. The performance of both flow field channels was compared using dif‐ ferent bipolar plate materials. The results show that metal foam flow channels overall performance was better than serpentine flow channels with all the various bipolar plate material used and Al material outperformed Cu and SS material. There is a direct correlation in terms of the outcome of the study and literature based on the data generated experimentally. It can however be concluded that molecules of hydrogen are stable on aluminium plates compared to copper and stainless steel
Review on the Safe Use of Ammonia Fuel Cells in the Maritime Industry
May 2021
Publication
In April 2018 the International Maritime Organisation adopted an ambitious plan to contribute to the global efforts to reduce the Greenhouse Gas emissions as set by the Paris Agreement by targeting a 50% reduction in shipping’s Green House Gas emissions by 2050 benchmarked to 2008 levels. To meet these challenging goals the maritime industry must introduce environmentally friendly fuels with negligible or low SOX NOX and CO2 emissions. Ammonia use in maritime applications is considered promising due to its high energy density low flammability easy storage and low production cost. Moreover ammonia can be used as fuel in a variety of propulsors such as fuel cells and can be produced from renewable sources. As a result ammonia can be used as a versatile marine fuel exploiting the existing infrastructure and having zero SOX and CO2 emissions. However there are several challenges to overcome for ammonia to become a compelling fuel towards the decarbonisation of shipping. Such factors include the selection of the appropriate ammonia-fuelled power generator the selection of the appropriate system safety assessment tool and mitigating measures to address the hazards of ammonia. This paper discusses the state-of-the-art of ammonia fuelled fuel cells for marine applications and presents their potential and challenges.
Technical and Commercial Challenges of Proton-Exchange Membrane (PEM) Fuel Cells
Dec 2020
Publication
This review critically evaluates the latest trends in fuel cell development for portable and stationary fuel cell applications and their integration into the automotive industry. Fast start-up high efficiency no toxic emissions into the atmosphere and good modularity are the key advantages of fuel cell applications. Despite the merits associated with fuel cells the high cost of the technology remains a key factor impeding its widespread commercialization. Therefore this review presents detailed information into the best operating conditions that yield maximum fuel cell performance. The paper recommends future research geared towards robust fuel cell geometry designs as this determines the cell losses and material characterization of the various cell components. When this is done properly it will support a total reduction in the cost of the cell which in effect will reduce the total cost of the system. Despite the strides made by the fuel cell research community there is a need for public sensitization as some people have reservations regarding the safety of the technology. This hurdle can be overcome if there is a well-documented risk assessment which also needs to be considered in future research activities.
Effect of Au Plasmonic Material on Poly M-Toluidine for Photoelectrochemical Hydrogen Generation from Sewage Water
Feb 2022
Publication
This study provides H2 gas as a renewable energy source from sewage water splitting reaction using a PMT/Au photocathode. So this study has a dual benefit for hydrogen generation; at the same time it removes the contaminations of sewage water. The preparation of the PMT is carried out through the polymerization process from an acid medium. Then the Au sputter was carried out using the sputter device under different times (1 and 2 min) for PMT/Au-1 min and PMT/Au-2min respectively. The complete analyses confirm the chemical structure such as XRD FTIR HNMR SEM and Vis-UV optical analyses. The prepared electrode PMT/Au is used for the hydrogen generation reaction using Na2S2O3 or sewage water as an electrolyte. The PMT crystalline size is 15 nm. The incident photon to current efficiency (IPCE) efficiency increases from 2.3 to 3.6% (at 390 nm) and the number of H2 moles increases from 8.4 to 33.1 mmol h−1 cm−2 for using Na2S2O3 and sewage water as electrolyte respectively. Moreover all the thermodynamic parameters such as activation energy (Ea) enthalpy (∆H*) and entropy (∆S*) were calculated; additionally a simple mechanism is mentioned for the water-splitting reaction.
A Review of Projected Power-to-Gas Deployment Scenarios
Jul 2018
Publication
Technical economic and environmental assessments of projected power-to-gas (PtG) deployment scenarios at distributed- to national-scale are reviewed as well as their extensions to nuclear-assisted renewable hydrogen. Their collective research trends outcomes challenges and limitations are highlighted leading to suggested future work areas. These studies have focused on the conversion of excess wind and solar photovoltaic electricity in European-based energy systems using low-temperature electrolysis technologies. Synthetic natural gas either solely or with hydrogen has been the most frequent PtG product. However the spectrum of possible deployment scenarios has been incompletely explored to date in terms of geographical/sectorial application environment electricity generation technology and PtG processes products and their end-uses to meet a given energy system demand portfolio. Suggested areas of focus include PtG deployment scenarios: (i) incorporating concentrated solar- and/or hybrid renewable generation technologies; (ii) for energy systems facing high cooling and/or water desalination/treatment demands; (iii) employing high-temperature and/or hybrid hydrogen production processes; and (iv) involving PtG material/energy integrations with other installations/sectors. In terms of PtG deployment simulation suggested areas include the use of dynamic and load/utilization factor-dependent performance characteristics dynamic commodity prices more systematic comparisons between power-to-what potential deployment options and between product end-uses more holistic performance criteria and formal optimizations.
Green Hydrogen: A Guide to Policy Making
Nov 2020
Publication
Hydrogen produced with renewable energy sources – or “green” hydrogen – has emerged as a key element to achieve net-zero emissions from heavy industry and transport. Along with net-zero commitments by growing numbers of governments green hydrogen has started gaining momentum based on low-cost renewable electricity ongoing technological improvements and the benefits of greater power-system flexibility.
Hydrogen-based fuels previously attracted interest mainly as an alternative to shore up oil supply. However green hydrogen as opposed to the “grey” (fossil-based) or “blue” (hybrid) varieties also help to boost renewables in the energy mix and decarbonise energy-intensive industries.
This report from the International Renewable Energy Agency (IRENA) outlines the main barriers that inhibiting green hydrogen uptake and the policies needed to address these. It also offers insights on how to kickstart the green hydrogen sector as a key enabler of the energy transition at the national or regional level.
Key pillars of green hydrogen policy making include:
Hydrogen-based fuels previously attracted interest mainly as an alternative to shore up oil supply. However green hydrogen as opposed to the “grey” (fossil-based) or “blue” (hybrid) varieties also help to boost renewables in the energy mix and decarbonise energy-intensive industries.
This report from the International Renewable Energy Agency (IRENA) outlines the main barriers that inhibiting green hydrogen uptake and the policies needed to address these. It also offers insights on how to kickstart the green hydrogen sector as a key enabler of the energy transition at the national or regional level.
Key pillars of green hydrogen policy making include:
- National hydrogen strategy. Each country needs to define its level of ambition for hydrogen outline the amount of support required and provide a reference on hydrogen development for private investment and finance.
- Setting policy priorities. Green hydrogen can support a wide range of end-uses. Policy makers should identify and focus on applications that provide the highest value.
- Guarantees of origin. Carbon emissions should be reflected over the whole lifecycle of hydrogen. Origin schemes need to include clear labels for hydrogen and hydrogen products to increase consumer awareness and facilitate claims of incentives.
- Governance system and enabling policies. As green hydrogen becomes mainstream policies should cover its integration into the broader energy system. Civil society and industry must be involved to maximise the benefits.
- Subsequent briefs will explore the entire hydrogen value chain providing sector-by-sector guidance on the design and implementation of green hydrogen policies.
Green Hydrogen Cost Reduction
Dec 2020
Publication
Scaling up renewables to meet the 1.5ºC climate goal
As global economies aim to become carbon neutral competitive hydrogen produced with renewables has emerged as a key component of the energy mix. Falling renewable power costs and improving electrolyser technologies could make ""green"" hydrogen cost competitive by 2030 this report finds.
Green hydrogen can help to achieve net-zero carbon dioxide (CO2) emissions in energy-intensive hard-to-decarbonise sectors like steel chemicals long-haul transport shipping and aviation. But production costs must be cut to make it economical for countries worldwide. Green hydrogen currently costs between two and three times more than ""blue"" hydrogen which is produced using fossil fuels in combination with carbon capture and storage (CCS).
This report from the International Renewable Energy Agency (IRENA) outlines strategies to reduce electrolyser costs through continuous innovation performance improvements and upscaling from megawatt (MW) to multi-gigawatt (GW) levels.
Among the findings:
As global economies aim to become carbon neutral competitive hydrogen produced with renewables has emerged as a key component of the energy mix. Falling renewable power costs and improving electrolyser technologies could make ""green"" hydrogen cost competitive by 2030 this report finds.
Green hydrogen can help to achieve net-zero carbon dioxide (CO2) emissions in energy-intensive hard-to-decarbonise sectors like steel chemicals long-haul transport shipping and aviation. But production costs must be cut to make it economical for countries worldwide. Green hydrogen currently costs between two and three times more than ""blue"" hydrogen which is produced using fossil fuels in combination with carbon capture and storage (CCS).
This report from the International Renewable Energy Agency (IRENA) outlines strategies to reduce electrolyser costs through continuous innovation performance improvements and upscaling from megawatt (MW) to multi-gigawatt (GW) levels.
Among the findings:
- Electrolyser design and construction: Increased module size and innovation with increased stack manufacturing have significant impacts on cost. Increasing plant size from 1 MW (typical in 2020) to 20 MW could reduce costs by over a third. Optimal system designs maximise efficiency and flexibility.
- Economies of scale: Increasing stack production with automated processes in gigawatt-scale manufacturing facilities can achieve a step-change cost reduction. Procurement of materials: Scarcity of materials can impede electrolyser cost reduction and scale-up.
- Efficiency and flexibility in operations: Power supply incurs large efficiency losses at low load limiting system flexibility from an economic perspective.
- Industrial applications: Design and operation of electrolysis systems can be optimised for specific applications in different industries. Learning rates: Based on historic cost declines for solar photovoltaics (PV) the learning rates for fuel cells and electrolysers – whereby costs fall as capacity expands – could reach values between 16% and 21%.
- Ambitious climate mitigation: An ambitious energy transition aligned with key international climate goals would drive rapid cost reduction for green hydrogen. The trajectory needed to limit global warming at 1.5oC could make electrolysers an estimated 40% cheaper by 2030.
Renewables Readiness Assessment: The Hashemite Kingdom of Jordan
Feb 2021
Publication
Jordan's energy diversification strategy is centred around renewables which are expected will provide the low-cost reliable secure and environmentally sustainable energy required to power its new engines of economic growth – manufacturing transport construction and agriculture.
The National Energy Strategy 2020–2030 presents the evolution of the energy sector under its vision for stimulating demand achieving efficiency and improving electricity system flexibility.
This Renewables Readiness Assessment (RRA) highlights key actions for the short and medium-term that could create more conductive conditions for renewable energy development. It aims to help unlock Jordan's renewable energy potential and provide the means to meet the energy diversification goals of its national strategy.
The study was undertaken by the Ministry of Energy and Mineral Resources (MEMR) in collaboration with the International Renewable Energy Agency (IRENA).
Key recommendations:
The National Energy Strategy 2020–2030 presents the evolution of the energy sector under its vision for stimulating demand achieving efficiency and improving electricity system flexibility.
This Renewables Readiness Assessment (RRA) highlights key actions for the short and medium-term that could create more conductive conditions for renewable energy development. It aims to help unlock Jordan's renewable energy potential and provide the means to meet the energy diversification goals of its national strategy.
The study was undertaken by the Ministry of Energy and Mineral Resources (MEMR) in collaboration with the International Renewable Energy Agency (IRENA).
Key recommendations:
- Provide the necessary conditions for renewables growth in the power sector.
- Foster continued growth of renewable power generation.
- Plan the integration of higher shares of renewable power.
- Incentivise the use of renewables for heating and cooling.
- Support renewable transport and mobility options.
- Catalyse renewable energy investment. Strengthen local industries and create jobs in renewables.
No more items...