Skip to content
1900

Carbon Dioxide Removal Potential from Decentralised Bioenergy with Carbon Capture and Storage (BECCS) and the Relevance of Operation Choices

Abstract

Bioenergy with carbon capture and storage (BECCS) technology is expected to support net-zero targets by supplying low carbon energy while providing carbon dioxide removal (CDR). BECCS is estimated to deliver 20 to 70 MtCO2 annual negative emissions by 2050 in the UK, despite there are currently no BECCS operating facility. This research is modelling and demonstrating the flexibility, scalability and attainable immediate application of BECCS. The CDR potential for two out of three BECCS pathways considered by the Intergovernmental Panel on Climate Change (IPCC) scenarios were quantified (i) modular-scale CHP process with post-combustion CCS utilising wheat straw and (ii) hydrogen production in a small-scale gasifier with pre-combustion CCS utilising locally sourced waste wood. Process modelling and lifecycle assessment were used, including a whole supply chain analysis. The investigated BECCS pathways could annually remove between − 0.8 and − 1.4 tCO2e tbiomass− 1 depending on operational decisions. Using all the available wheat straw and waste wood in the UK, a joint CDR capacity for both systems could reach about 23% of the UK’s CDR minimum target set for BECCS. Policy frameworks prioritising carbon efficiencies can shape those operational decisions and strongly impact on the overall energy and CDR performance of a BECCS system, but not necessarily maximising the trade-offs between biomass use, energy performance and CDR. A combination of different BECCS pathways will be necessary to reach net-zero targets. Decentralised BECCS deployment could support flexible approaches allowing to maximise positive system trade-offs, enable regional biomass utilisation and provide local energy supply to remote areas.

Funding source: This work was conduted as part of ‘Feasibility of Afforestation and Biomass Energy with Carbon Capture and Storage for Greenhouse Gas Removal’ (FAB-GGR) project, funded by the Natural Environment Research Council (NERC) (Grant number: NE/P019722/2) and was supported by the EPSRC/BBSRC Supergen Bioenergy Hub (Grant number: EP/S000771/1).
Related subjects: Production & Supply Chain
Countries: United Kingdom
Loading

Article metrics loading...

/content/journal7420
2022-03-09
2025-12-05
/content/journal7420
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test