Hydrogen-Enabled Power Systems: Technologies’ Options Overview and Effect on the Balance of Plant
Abstract
Hydrogen-based Power Systems (H2PSs) are gaining accelerating momentum globally to reduce energy costs and dependency on fossil fuels. A H2PS typically comprises three main parts: hydrogen production, storage, and power generation, called packages. A review of the literature and Original Equipment Manufacturers (OEM) datasheets reveals that no single manufacturer supplies all H2PS components, posing significant challenges in system design, parts integration, and safety assurance. Additionally, both the literature and H2PS projects’ database highlight a gap in a systematic hydrogen equipment and auxiliary sub-systems technology selection process, and how this selection affects the overall H2PS Balance of Plant (BoP). This study addresses that gap by providing a guideline for available technology options and their impact on the H2PS-BoP. The analysis compares packages and auxiliary sub-system technologies to support informed engineering decisions regarding technology and equipment selection. The study finds that each package’s technology influences the selection criteria of the other packages and the associated BoP requirements. Furthermore, the choice of technologies across packages significantly affects overall system integrity and BoP. These interdependencies are illustrated using a cause-and-effect matrix. The study’s significance lies in establishing a structured guideline for engineering design and operations, enhancing the accuracy of feasibility studies, and accelerating the global implementation of H2PS.