Australia
Hydrogen as a Long-Term Large-Scale Energy Storage Solution to Support Renewables
Oct 2018
Publication
This paper presents a case study of using hydrogen for large-scale long-term storage application to support the current electricity generation mix of South Australia state in Australia which primarily includes gas wind and solar. For this purpose two cases of battery energy storage and hybrid battery-hydrogen storage systems to support solar and wind energy inputs were compared from a techno-economical point of view. Hybrid battery-hydrogen storage system was found to be more cost competitive with unit cost of electricity at $0.626/kWh (US dollar) compared to battery-only energy storage systems with a $2.68/kWh unit cost of electricity. This research also found that the excess stored hydrogen can be further utilised to generate extra electricity. Further utilisation of generated electricity can be incorporated to meet the load demand by either decreasing the base load supply from gas in the present scenario or exporting it to neighbouring states to enhance economic viability of the system. The use of excess stored hydrogen to generate extra electricity further reduced the cost to $0.494/kWh.
Hydrogen Impacts on Downstream Installation and Appliances
Nov 2019
Publication
The report analyses the technical impacts to end-users of natural gas in Australian distribution networks when up to 10% hydrogen (by volume) is mixed with natural gas.
The full report can be found at this link.
The full report can be found at this link.
Emerging Electrochemical Energy Conversion and Storage Technologies
Sep 2014
Publication
Electrochemical cells and systems play a key role in a wide range of industry sectors. These devices are critical enabling technologies for renewable energy; energy management conservation and storage; pollution control/monitoring; and greenhouse gas reduction. A large number of electrochemical energy technologies have been developed in the past. These systems continue to be optimized in terms of cost life time and performance leading to their continued expansion into existing and emerging market sectors. The more established technologies such as deep-cycle batteries and sensors are being joined by emerging technologies such as fuel cells large format lithium-ion batteries electrochemical reactors; ion transport membranes and supercapacitors. This growing demand (multi-billion dollars) for electrochemical energy systems along with the increasing maturity of a number of technologies is having a significant effect on the global research and development effort which is increasing in both in size and depth. A number of new technologies which will have substantial impact on the environment and the way we produce and utilize energy are under development. This paper presents an overview of several emerging electrochemical energy technologies along with a discussion some of the key technical challenges.
Australian and Global Hydrogen Demand Growth Scenario Analysis
Nov 2019
Publication
Deloitte was commissioned by the National Hydrogen Taskforce established by the COAG Energy Council to undertake an Australian and Global Growth Scenario Analysis. Deloitte analysed the current global hydrogen industry its development and growth potential and how Australia can position itself to best capitalise on the newly forming industry.
To conceptualise the possibilities for Australia Deloitte created scenarios to model the realm of possibilities for Australia out to 2050 focusing on identifying the scope and distribution of economic and environmental costs and benefits from Australian hydrogen industry development. This work will aid in analysing the opportunities and challenges to hydrogen industry development in Australia and the actions needed to overcome barriers to industry growth manage risks and best drive industry development.
The full report is available on the Deloitte website at this link
To conceptualise the possibilities for Australia Deloitte created scenarios to model the realm of possibilities for Australia out to 2050 focusing on identifying the scope and distribution of economic and environmental costs and benefits from Australian hydrogen industry development. This work will aid in analysing the opportunities and challenges to hydrogen industry development in Australia and the actions needed to overcome barriers to industry growth manage risks and best drive industry development.
The full report is available on the Deloitte website at this link
Hydrogen in the Gas Distribution Networks: A Kickstart Project as an Input into the Development of a National Hydrogen Strategy for Australia
Nov 2019
Publication
The report investigates a kickstart project that allows up to 10% hydrogen into gas distribution networks. It reviews the technical impacts and standards to identify barriers and develop recommendations.
You can see the full report on the Australian Government website here
This report is developed in support of Australia's National Hydrogen Strategy
You can see the full report on the Australian Government website here
This report is developed in support of Australia's National Hydrogen Strategy
Lessons Learned from Australian Infrastructure Upgrades
Feb 2020
Publication
This report fulfils Deliverable Five for Research Project 2.1-01 of the Future Fuels CRC. The aims of this project Crystallising lessons learned from major infrastructure upgrades are to provide a report on lessons learned from earlier infrastructure upgrades and fuel transitions and identify tools that can be used to develop consistent messaging around the proposed transition to hydrogen and/or other low-carbon fuels. In both the report and the toolkit there are recommendations on how to apply lessons learned and shape messaging throughout the value chain based on prior infrastructure upgrades.
This report presents three Australian case studies that that are relevant to the development of future fuels: the transition from town gas to natural gas the use of ethanol and LPG as motor fuels and the development of coal seam gas resources. Drawing on published information each case study provides an account of the issues that arose during the upgrade or transition and of the approaches through which industry and government stakeholders managed these issues. From these accounts lessons are identified that can guide stakeholder engagement in future infrastructure upgrades and fuel transitions. The findings from the case studies and academic literature have been used to develop an accompanying draft toolkit for use by FFCRC stakeholders.
The report also distils applicable lessons and frameworks from academic literature about stakeholder analysis megaprojects and the social acceptance of industries and technologies. This report is meant to be used in conjunction with a companion toolkit that provides a framework for making coordinated decisions across the fuel value chain.
You can read the full report on the Future Fuels CRC website here
This report presents three Australian case studies that that are relevant to the development of future fuels: the transition from town gas to natural gas the use of ethanol and LPG as motor fuels and the development of coal seam gas resources. Drawing on published information each case study provides an account of the issues that arose during the upgrade or transition and of the approaches through which industry and government stakeholders managed these issues. From these accounts lessons are identified that can guide stakeholder engagement in future infrastructure upgrades and fuel transitions. The findings from the case studies and academic literature have been used to develop an accompanying draft toolkit for use by FFCRC stakeholders.
The report also distils applicable lessons and frameworks from academic literature about stakeholder analysis megaprojects and the social acceptance of industries and technologies. This report is meant to be used in conjunction with a companion toolkit that provides a framework for making coordinated decisions across the fuel value chain.
You can read the full report on the Future Fuels CRC website here
Open-cathode PEMFC Heat Utilisation to Enhance Hydrogen Supply Rate of Metal Hydride Canisters
Mar 2019
Publication
In this paper the hydrogen supply to an open-cathode PEM fuel cell (FC) by using metal hydride (MH) storage and thermal coupling between these two components are investigated theoretically. One of the challenges in using MH hydrogen storage canisters is their limited hydrogen supply rate as the hydrogen release from MH is an endothermic reaction. Therefore in order to meet the required hydrogen supply rate high amounts of MH should be employed that usually suggests storage of hydrogen to be higher than necessary for the application adding to the size weight and cost of the system. On the other hand the exhaust heat (i.e. that is usually wasted if not utilised for this purpose) from open-cathode FCs is a low-grade heat. However this heat can be transferred to MH canisters through convection to heat them up and increase their hydrogen release rate. A mathematical model is used to simulate the heat transfer between PEMFC exhaust heat and MH storage. This enables the prediction of the required MH for different FC power levels with and without heat supply to the MH storage. A 2.5-kW open-cathode FC is used to measure the exhaust air temperature at different output powers. It was found that in the absence of heat supply from the FC to the MH canisters significantly higher number of MH canisters are required to achieve the required rate of hydrogen supply to the FC for sustained operation (specially at high power outputs). However using the exhaust hot air from the FC to supply heat to the MH storage can reduce the number of the MH canisters required by around 40% to 70% for power output levels ranging from 500 W to 2000 W.
Australian Hydrogen Hubs Study
Nov 2019
Publication
Arup have conducted interviews with targeted industry and government stakeholders to gather data and perspectives to support the development of this study. Arup have also utilised private and publicly available data sources building on recent work undertaken by Geoscience Australia and Deloitte and the comprehensive stakeholder engagement process to inform our research. This study considers the supply chain and infrastructure requirements to support the development of export and domestic hubs. The study aims to provide a succinct “Hydrogen Hubs” report for presentation to the hydrogen working group.
The hydrogen supply chain infrastructure required to produce hydrogen for export and domestic hubs was identified along with feedback from the stakeholder engagement process. These infrastructure requirements can be used to determine the factors for assessing export and domestic hub opportunities. Hydrogen production pathways transportation mechanisms and uses were also further evaluated to identify how hubs can be used to balance supply and demand of hydrogen.
A preliminary list of current or anticipated locations has been developed through desktop research Arup project knowledge and the stakeholder consultation process. Over 30 potential hydrogen export locations have been identified in Australia through desktop research and the stakeholder survey and consultation process. In addition to establishing export hubs the creation of domestic demand hubs will be essential to the development of an Australian hydrogen economy. It is for this reason that a list of criteria has been developed for stakeholders to consider in the siting and design of hydrogen hubs. The key considerations explored are based on demand supply chain infrastructure and investment and policy areas.
Based on these considerations a list of criteria were developed to assess the viability of export and domestic hydrogen hubs. Criteria relevant to assessing the suitability of export and domestic hubs include:
A framework that includes the assessment criteria has been developed to aid decision making rather than recommending specific locations that would be most appropriate for a hub. This is because there are so many dynamic factors that go into selecting a location of a hydrogen hub that it is not appropriate to be overly prescriptive or prevent stakeholders from selecting the best location themselves or from the market making decisions based on its own research and knowledge. The developed framework rather provides information and support to enable these decision-making processes.
The hydrogen supply chain infrastructure required to produce hydrogen for export and domestic hubs was identified along with feedback from the stakeholder engagement process. These infrastructure requirements can be used to determine the factors for assessing export and domestic hub opportunities. Hydrogen production pathways transportation mechanisms and uses were also further evaluated to identify how hubs can be used to balance supply and demand of hydrogen.
A preliminary list of current or anticipated locations has been developed through desktop research Arup project knowledge and the stakeholder consultation process. Over 30 potential hydrogen export locations have been identified in Australia through desktop research and the stakeholder survey and consultation process. In addition to establishing export hubs the creation of domestic demand hubs will be essential to the development of an Australian hydrogen economy. It is for this reason that a list of criteria has been developed for stakeholders to consider in the siting and design of hydrogen hubs. The key considerations explored are based on demand supply chain infrastructure and investment and policy areas.
Based on these considerations a list of criteria were developed to assess the viability of export and domestic hydrogen hubs. Criteria relevant to assessing the suitability of export and domestic hubs include:
- Health and safety provisions;
- Environmental considerations;
- Economic and social considerations;
- Land availability with appropriate zoning and buffer distances & ownership (new terminals storage solar PV industries etc.);•
- Availability of gas pipeline infrastructure;
- Availability of electricity grid connectivity backup energy supply or co-location of renewables;
- Road & rail infrastructure (site access);
- Community and environmental concerns and weather. Social licence consideration;
- Berths (berthing depth ship storage loading facilities existing LNG and/or petroleum infrastructure etc.);
- Port potential (current capacity & occupancy expandability & scalability);
- Availability of or potential for skilled workers (construction & operation);
- Availability of or potential for water (recycled & desalinated);
- Opportunity for co-location with industrial ammonia production and future industrial opportunities;
- Interest (projects priority ports state development areas politics etc.);
- Shipping distance to target market (Japan & South Korea);
- Availability of demand-based infrastructure (i.e. refuelling stations).
A framework that includes the assessment criteria has been developed to aid decision making rather than recommending specific locations that would be most appropriate for a hub. This is because there are so many dynamic factors that go into selecting a location of a hydrogen hub that it is not appropriate to be overly prescriptive or prevent stakeholders from selecting the best location themselves or from the market making decisions based on its own research and knowledge. The developed framework rather provides information and support to enable these decision-making processes.
Global Status of CCS 2021: CCS Accelerating to Net Zero
Oct 2021
Publication
Carbon capture and storage (CCS) continues to make significant progress around the world against a backdrop of greater climate action from countries and private companies. The Global Status of CCS 2021 demonstrates the critical role of CCS as nations and industry accelerate to net-zero.<br/>The report provides detailed analyses of the global project pipeline international policy finance and emerging trends. In addition four regional overviews highlight the rapid development of CCS across North America Asia Pacific Europe and nearby regions and the Gulf Cooperation Council states.
Advancing Hydrogen: Learning from 19 Plans to Advance Hydrogen from Across the Globe
Jul 2019
Publication
Hydrogen as the International Energy Agency (IEA 2019) notes has experienced a number of ‘false dawns’ - in the 1970s 1990s and early 2000s - which subsequently faded. However this time there is reason to think that hydrogen will play a substantial role in the global energy system. The most important factor driving this renewed focus is the ability of hydrogen to support deep carbon abatement by assisting in those sectors where abatement with non-carbon electricity has so far proven difficult. Hydrogen can also address poor urban air quality energy security and provides a good means of shifting energy supply between regions and between seasons.
In response to these changed conditions many countries states and even cities have developed hydrogen strategies while various interest groups have developed industry roadmaps which fulfil a similar role.
This report summarises 19 hydrogen strategies and aims to help readers understand how nations regions and industries are thinking about opportunities to become involved in this emerging industry. Its prime purpose is to act as a resource to assist those involved in long-term energy policy planning in Australia including those involved in the development of Australia’s hydrogen strategy
The full report can be read on the Energy Network website at this link here
In response to these changed conditions many countries states and even cities have developed hydrogen strategies while various interest groups have developed industry roadmaps which fulfil a similar role.
This report summarises 19 hydrogen strategies and aims to help readers understand how nations regions and industries are thinking about opportunities to become involved in this emerging industry. Its prime purpose is to act as a resource to assist those involved in long-term energy policy planning in Australia including those involved in the development of Australia’s hydrogen strategy
The full report can be read on the Energy Network website at this link here
Shielded Hydrogen Passivation – A Novel Method for Introducing Hydrogen into Silicon
Sep 2017
Publication
This paper reports a new approach for exposing materials including solar cell structures to atomic hydrogen. This method is dubbed Shielded Hydrogen Passivation (SHP) and has a number of unique features offering high levels of atomic hydrogen at low temperature whilst inducing no damage. SHP uses a thin metallic layer in this work palladium between a hydrogen generating plasma and the sample which shields the silicon sample from damaging UV and energetic ions while releasing low energy neutral atomic hydrogen onto the sample. In this paper the importance of the preparation of the metallic shield either to remove a native oxide or to contaminate intentionally the surface are shown to be potential methods for increasing the amount of atomic hydrogen released. Excellent damage free surface passivation of thin oxides is observed by combining SHP and corona discharge obtaining minority carrier lifetimes of 2.2 ms and J0 values below 5.47 fA/cm2. This opens up a number of exciting opportunities for the passivation of advanced cell architectures such as passivated contacts and heterojunctions.
Australia's National Hydrogen Strategy
Nov 2019
Publication
Australia’s National Hydrogen Strategy sets a vision for a clean innovative safe and competitive hydrogen industry that benefits all Australians. It aims to position our industry as a major player by 2030.<br/>The strategy outlines an adaptive approach that equips Australia to scale up quickly as the hydrogen market grows. It includes a set of nationally coordinated actions involving governments industry and the community.
A Review of Hydrogen as a Fuel in Internal Combustion Engines
Sep 2021
Publication
The demand for fossil fuels is increasing because of globalization and rising energy demands. As a result many nations are exploring alternative energy sources and hydrogen is an efficient and practical alternative fuel. In the transportation industry the development of hydrogen-powered cars aims to maximize fuel efficiency and significantly reduce exhaust gas emission and concentration. The impact of using hydrogen as a supplementary fuel for spark ignition (SI) and compression ignition (CI) engines on engine performance and gas emissions was investigated in this study. By adding hydrogen as a fuel in internal combustion engines the torque power and brake thermal efficiency of the engines decrease while their brake-specific fuel consumption increase. This study suggests that using hydrogen will reduce the emissions of CO UHC CO2 and soot; however NOx emission is expected to increase. Due to the reduction of environmental pollutants for most engines and the related environmental benefits hydrogen fuel is a clean and sustainable energy source and its use should be expanded.
Blending Ammonia into Hydrogen to Enhance Safety through Reduced Burning Velocity
Sep 2019
Publication
Laminar burning velocities (SL) of hydrogen/ammonia mixtures in air at atmospheric pressure were studied experimentally and numerically. The blending of hydrogen with ammonia two fuels that have been proposed as promising carriers for renewable energy causes the laminar flame speed of the mixture SL to decrease significantly. However details of this have not previously available. Systematic measurements were therefore performed for a series of hydrogen/ammonia mixtures with wide ranges of mole fractions of blended ammonia (XNH3) and equivalence ratio using a heat flux method based on heat flux of a flat flame transferred to the burner surface. It was found that the mixture of XNH3 = 40% has a value of SL close to that of methane which is the dominant component of natural gas. Using three chemical kinetic mechanisms available in the literature i.e. the well-known GRI-Mech 3.0 mechanism and two mechanisms recently released SL were also modelled for the cases studied. However the discrepancies between the experimental and numerical results can exceed 50% with the GRI-Mech 3.0 mechanism. Discrepancies were also found between the numerical results obtained with different mechanisms. These results can contribute to an increase in both the safety and efficiency of the coutilization of these two types of emerging renewable fuel and to guiding the development of better kinetic models.
Achieving Net Zero Electricity Sectors in G7 Members
Oct 2021
Publication
Achieving Net Zero Electricity Sectors in G7 Members is a new report by the International Energy Agency that provides a roadmap to driving down CO2 emissions from electricity generation to net zero by 2035 building on analysis in Net Zero by 2050: A Roadmap for the Global Energy Sector.
The new report was requested by the United Kingdom under its G7 Presidency and followed the G7 leaders’ commitment in June 2021 to reach “an overwhelmingly decarbonised” power system in the 2030s and net zero emissions across their economies no later than 2050. It is designed to inform policy makers industry investors and citizens in advance of the COP26 Climate Change Conference in Glasgow that begins at the end of October 2021.
Starting from recent progress and the current state of play of electricity in the G7 the report analyses the steps needed to achieve net zero emissions from electricity and considers the wider implications for energy security employment and affordability. It identifies key milestones emerging challenges and opportunities for innovation.
The report also underscores how G7 members can foster innovation through international collaboration and as first movers lower the cost of technologies for other countries while maintaining electricity security and placing people at the centre of clean energy transitions.
Link to their website
The new report was requested by the United Kingdom under its G7 Presidency and followed the G7 leaders’ commitment in June 2021 to reach “an overwhelmingly decarbonised” power system in the 2030s and net zero emissions across their economies no later than 2050. It is designed to inform policy makers industry investors and citizens in advance of the COP26 Climate Change Conference in Glasgow that begins at the end of October 2021.
Starting from recent progress and the current state of play of electricity in the G7 the report analyses the steps needed to achieve net zero emissions from electricity and considers the wider implications for energy security employment and affordability. It identifies key milestones emerging challenges and opportunities for innovation.
The report also underscores how G7 members can foster innovation through international collaboration and as first movers lower the cost of technologies for other countries while maintaining electricity security and placing people at the centre of clean energy transitions.
Link to their website
Sustainable Power Supply Solutions for Off-Grid Base Stations
Sep 2015
Publication
The telecommunication sector plays a significant role in shaping the global economy and the way people share information and knowledge. At present the telecommunication sector is liable for its energy consumption and the amount of emissions it emits in the environment. In the context of off-grid telecommunication applications off-grid base stations (BSs) are commonly used due to their ability to provide radio coverage over a wide geographic area. However in the past the off-grid BSs usually relied on emission-intensive power supply solutions such as diesel generators. In this review paper various types of solutions (including in particular the sustainable solutions) for powering BSs are discussed. The key aspects in designing an ideal power supply solution are reviewed and these mainly include the pre-feasibility study and the thermal management of BSs which comprise heating and cooling of the BS shelter/cabinets and BS electronic equipment and power supply components. The sizing and optimization approaches used to design the BSs’ power supply systems as well as the operational and control strategies adopted to manage the power supply systems are also reviewed in this paper.
Modeling of Thermal Performance of a Commercial Alkaline Electrolyzer Supplied with Various Electrical Currents
Nov 2021
Publication
Hydrogen produced by solar and other clean energy sources is an essential alternative to fossil fuels. In this study a commercial alkaline electrolyzer with different cell numbers and electrode areas are simulated for different pressure temperature thermal resistance and electrical current. This alkaline electrolyzer is considered unsteady in simulations and different parameters such as temperature are obtained in terms of time. The obtained results are compared with similar results in the literature and good agreement is observed. Various characteristics of this alkaline electrolyzer as thermoneutral voltage faraday efficiency and cell voltage are calculated and displayed. The outlet heat rate and generated heat rate are obtained as well. The pressure and the temperature in the simulations are between 1 and 100 bar and between 300 and 360 Kelvin respectively. The results show that the equilibrium temperature is reached 2-3 hours after the time when the Alkaline electrolyzer starts to work.
Carbon Capture and Storage in the USA: The Role of US Innovation Leadership in Climate-technology Commercialization
Nov 2019
Publication
To limit global warming and mitigate climate change the global economy needs to decarbonize and reduce emissions to net-zero by mid-century. The asymmetries of the global energy system necessitate the deployment of a suite of decarbonization technologies and an all-of-the-above approach to deliver the steep CO2 -emissions reductions necessary. Carbon capture and storage (CCS) technologies that capture CO2 from industrial and power-plant point sources as well as the ambient air and store them underground are largely seen as needed to address both the flow of emissions being released and the stock of CO2 already in the atmosphere. Despite the pressing need to commercialize the technologies their large-scale deployment has been slow. Initial deployment however could lead to near-term cost reduction and technology proliferation and lowering of the overall system cost of decarbonization. As of November 2019 more than half of global large-scale CCS facilities are in the USA thanks to a history of sustained government support for the technologies. Recently the USA has seen a raft of new developments on the policy and project side signalling a reinvigorated push to commercialize the technology. Analysing these recent developments using a policy-priorities framework for CCS commercialization developed by the Global CCS Institute the paper assesses the USA’s position to lead large-scale deployment of CCS technologies to commercialization. It concludes that the USA is in a prime position due to the political economic characteristics of its energy economy resource wealth and innovation-driven manufacturing sector.
Promotion Effect of Proton-conducting Oxide BaZr0.1Ce0.7Y0.2O3−δ on the Catalytic Activity of Ni Towards Ammonia Synthesis from Hydrogen and Nitrogen
Aug 2018
Publication
In this report for the first time it has been observed that proton-conducting oxide BaZr0.1Ce0.7Y0.2O3−δ (BZCY) has significant promotion effect on the catalytic activity of Ni towards ammonia synthesis from hydrogen and nitrogen. Renewable hydrogen can be used for ammonia synthesis to save CO2 emission. By investigating the operating parameters of the reaction the optimal conditions for this catalyst were identified. It was found that at 620 °C with a total flow rate of 200 mL min−1 and a H2/N2 mol ratio of 3 an activity of approximately 250 μmol g−1 h−1 can be achieved. This is ten times larger than that for the unpromoted Ni catalyst under the same conditions although the stability of both catalysts in the presence of steam was not good. The specific activity of Ni supported on proton-conducting oxide BZCY is approximately 72 times higher than that of Ni supported on non-proton conductor MgO-CeO2. These promotion effects were suspected to be due to the proton conducting nature of the support. Therefore it is proposed that the use of proton conducting support materials with highly active ammonia synthesis catalysts such as Ru and Fe will provide improved activity of at lower temperatures.
No more items...