Skip to content
1900

Analysis of the Main Hydrogen Production Technologies

Abstract

Hydrogen, as a clean energy source, has enormous potential in addressing global climate change and energy security challenges. This paper discusses different hydrogen production methodologies (steam methane reforming and water electrolysis), focusing on the electrolysis process as the most promising method for industrial-scale hydrogen generation. The review delved into three main electrolysis methods, including alkaline water electrolysis, proton exchange membrane electrolysis, and anion exchange membrane electrolysis cells. Also, the production of hydrogen as a by-product by means of membrane cells and mercury cells. The process of reforming natural gas (mainly methane) using steam is currently the predominant technique, comprising approximately 96% of the world’s hydrogen synthesis. However, it is carbon intensive and therefore not sustainable over time. Water, as a renewable resource, carbon-free and rich in hydrogen (11.11%), offers one of the best solutions to replace hydrogen production from fossil fuels by decomposing water. This article highlights the fundamental principles of electrolysis, recent membrane studies, and operating parameters for hydrogen production. The study also shows the amount of pollutant emissions (g of CO2/g of H2) associated with a hydrogen color attribute. The integration of water electrolysis with renewable energy sources constitutes an efficient and sustainable strategy in the production of green hydrogen, minimizing environmental impact and optimizing the use of clean energy resources.

Funding source: This research was funded by National University of Callao in Lima Peru.
Related subjects: Production & Supply Chain
Countries: Peru
Loading

Article metrics loading...

/content/journal7644
2025-09-18
2025-12-05
/content/journal7644
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test