Skip to content
1900

A Review of Green Hydrogen Technologies and Their Role in Enabling Sustainable Energy Access in Remote and Off-Grid Areas Within Sub-Saharan Africa

Abstract

Electricity access deficits remain acute in Sub-Saharan Africa (SSA), where more than 600 million people lack reliable supply. Green hydrogen, produced through renewablepowered electrolysis, is increasingly recognized as a transformative energy carrier for decentralized systems due to its capacity for long-duration storage, sector coupling, and near-zero carbon emissions. This review adheres strictly to the PRISMA 2020 methodology, examining 190 records and synthesizing 80 peer-reviewed articles and industry reports released from 2010 to 2025. The review covers hydrogen production processes, hybrid renewable integration, techno-economic analysis, environmental compromises, global feasibility, and enabling policy incentives. The findings show that Alkaline (AEL) and PEM electrolyzers are immediately suitable for off-grid scenarios, whereas Solid Oxide (SOEC) and Anion Exchange Membrane (AEM) electrolyzers present high potential for future deployment. For Sub-Saharan Africa (SSA), the levelized costs of hydrogen (LCOH) are in the range of EUR5.0–7.7/kg. Nonetheless, estimates from the learning curve indicate that these costs could fall to between EUR1.0 and EUR1.5 per kg by 2050, assuming there is (i) continued public support for the technology innovation, (ii) appropriate, flexible, and predictable regulation, (iii) increased demand for hydrogen, and (iv) a stable and long-term policy framework. Environmental life-cycle assessments indicate that emissions are nearly zero, but they also highlight serious concerns regarding freshwater usage, land occupation, and dependence on platinum group metals. Namibia, South Africa, and Kenya exhibit considerable promise in the early stages of development, while Niger demonstrates the feasibility of deploying modular, community-scale systems in challenging conditions. The study concludes that green hydrogen cannot be treated as an integrated solution but needs to be regarded as part of blended off-grid systems. To improve its role, targeted material innovation, blended finance, and policies bridging export-oriented applications to community-scale access must be established. It will then be feasible to ensure that hydrogen

Related subjects: Policy & Socio-Economics
Countries: South Africa
Loading

Article metrics loading...

/content/journal7687
2025-09-22
2025-12-05
/content/journal7687
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test