Skip to content
1900

Coordinated Operation of Alternative Fuel Vehicle-integrated Microgrid in a Coupled Power-transportation Network: A Stackelberg-Nash Game Framework

Abstract

With the rapid development of alternative fuel vehicles (AFVs) and renewable energy sources, the increasing coordination between electric vehicles (EVs) and hydrogen vehicles (HVs) in urban coupled powertransportation networks (CPTNs) fosters optimized energy scheduling and enhanced system performance. This study proposes a two-level Stackelberg-Nash game framework for AFV-integrated microgrids in a CPTN to enhance the economic efficiency of microgrid. This framework employs a Stackelberg game model to define the leader-follower relationship between the microgrid operator and the vehicle-to-grid (V2G) aggregator. Nash equilibrium games are established to capture competitive interactions among charging stations (CSs) and among hydrogen refueling stations (HRSs). Furthermore, an optimal scheduling model is proposed to minimize microgrid operation costs considering the spatiotemporal dynamics and user preferences of EVs and HVs, supported by the proposed dynamic choice model. A game-theoretic pricing and incentive mechanism promotes AFV participation in V2G services, enhancing the profitability of CSs and HRSs. Afterward, a momentum-enhanced Stackelberg-Nash equilibrium algorithm is developed to address the bi-level optimization problem. Finally, numerical simulations validate the effectiveness of the proposed method in improving economic efficiency and reducing operation costs. The proposed approach offers an effective solution for integrating large-scale AFV fleets into sustainable urban energy and transportation systems.

Related subjects: Applications & Pathways
Loading

Article metrics loading...

/content/journal7769
2025-09-26
2025-12-05
/content/journal7769
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test