Skip to content
1900

A Hydrogen Supply System Utilizing PEMFC Exhaust Heat and Modular Metal Hydride Tanks for Hydrogen-powered Bicycles

Abstract

A compact hydrogen supply system for thermally integrating metal hydride (MH) tanks with a proton exchange membrane fuel cell (PEMFC) for a hydrogen-powered electric-assist bicycle (H-bike) is proposed. The system recovers the exhaust heat generated by the PEMFC to sustain hydrogen desorption and improve the system’s energy efficiency. The results demonstrate that the split-tank strategy decreases thermal and pressure gradients and enhances heat transfer and hydrogen release. The honeycomb tank configuration further improves hydrogen desorption by promoting uniform airflow distribution around each tank, thereby improving exhaust heat utilization from the PEMFC. It employs a layer-adjustable configuration, facilitating the flexible adaptation of MH cartridge quantities to meet hydrogen demand and prevailing road conditions in urban areas. Under a PEMFC power output of 215 W, the system maintains a stable hydrogen flow rate for over 30 min, with a heat recovery efficiency of 22.62 %. Furthermore, increasing the number of MH cartridge layers significantly improves the thermal utilization of the system, achieving a utilization efficiency of 39.90 % with two layers. These findings confirm the feasibility and scalability of the proposed system for H-bike, highlighting its potential as a decentralized hydrogen supply solution for lightweight mobility and urban transportation applications.

Related subjects: Applications & Pathways
Countries: Japan
Loading

Article metrics loading...

/content/journal7770
2025-09-25
2025-12-05
/content/journal7770
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test