Efficient and Stable N-type Sulfide Overall Water Splitting with Separated Hydrogen Production
Abstract
N-type sulfide semiconductors are promising photocatalysts due to their broad visible-light absorption, facile synthesis and chemical diversity. However, photocorrosion and limited electron transport in one-step excitation and solid-state Z-scheme systems hinder efficient overall water splitting. Liquidphase Z-schemes offer a viable alternative, but sluggish mediator kinetics and interfacial side reactions impede their construction. Here we report a stable Z-scheme system integrating n-type CdS and BiVO₄ with a [Fe(CN)₆]³⁻/[Fe(CN)₆]⁴⁻ mediator, achieving 10.2% apparent quantum yield at 450 nm with stoichiometric H₂/O₂ evolution. High activity reflects synergies between Pt@CrOx and Co3O4 cocatalysts on CdS, and cobalt-directed facet asymmetry in BiVO₄, resulting in matched kinetics for hydrogen and oxygen evolution in a reversible mediator solution. Stability is dramatically improved through coating CdS and BiVO4 with different oxides to inhibit Fe4[Fe(CN)6]3 precipitation and deactivation by a hitherto unrecognized mechanism. Separate hydrogen and oxygen production is also demonstrated in a twocompartment reactor under visible light and ambient conditions. This work unlocks the long-sought potential of n-type sulfides for efficient, durable and safe solar-driven hydrogen production.