Research on Hydrogen Leakage Risk Control Methods in Deck Compartments of Hydrogen Fuel Cell-Powered Ships Based on CFD Simulation and Ventilation Optimization
Abstract
Hydrogen fuel cell vessels represent a vital direction for green shipping, but the risk of large-scale hydrogen leakage and diffusion in their enclosed compartments is particularly prominent. To enhance safety, a simplified three-dimensional model of the deck-level cabins of the “Water-Go-Round” passenger ship was established using SolidWorks (2023) software. Based on a hydrogen leakage and diffusion model, the effects of leakage location, leakage aperture, and initial ambient temperature on the diffusion patterns and distribution of hydrogen within the cabins were investigated using FLUENT software. The results show that leak location significantly affects diffusion direction, with hydrogen leaking from the compartment ceiling diffusing horizontally much faster than from the floor. When leakage occurs at the compartment ceiling, hydrogen can reach a maximum horizontal diffusion distance of up to 5.04 m within 540 s; the larger the leak aperture, the faster the diffusion, with a 10 mm aperture exhibiting a 40% larger diffusion range than a 6 mm aperture at 720 s. The study provides a theoretical basis for the safety design and risk prevention of hydrogen fuel cell vessels.