Sustainable Aviation Fuels: Addressing Barriers to Global Adoption
Abstract
The aviation industry is responsible for approximately 2–3% of worldwide CO2 emissions and is increasingly subjected to demands for the attainment of net-zero emissions targets by the year 2050. Traditional fossil jet fuels, which exhibit lifecycle emissions of approximately 89 kg CO2-eq/GJ, play a substantial role in exacerbating climate change, contributing to local air pollution, and fostering energy insecurity. In contrast, Sustainable Aviation Fuels (SAFs) derived from renewable feedstocks, including biomass, municipal solid waste, algae, or through CO2- and H2-based power-to-liquid (PtL) represent a pivotal solution for the immediate future. SAFs generally accomplish lifecycle greenhouse gas (GHG) reductions of 50–80% (≈20–30 kg CO2-eq/GJ), possess reduced sulfur and aromatic content, and markedly diminish particulate emissions, thus alleviating both climatic and health-related repercussions. In addition to their environmental advantages, SAFs promote energy diversification, lessen reliance on unstable fossil fuel markets, and invigorate regional economies, with projections indicating the creation of up to one million green jobs by 2030. This comprehensive review synthesizes current knowledge on SAF sustainability advantages compared to conventional aviation fuels, identifying critical barriers to large-scale deployment and proposing integrated solutions that combine technological innovation, supportive policy frameworks, and international collaboration to accelerate the aviation industry’s sustainable transformation.