Integrated Optimization of Energy Storage and Green Hydrogen Systems for Resilient and Sustainable Future Power Grids
Abstract
This study presents a novel multi-objective optimization framework supporting nations sustainability 2030–2040 visions by enhancing renewable energy integration, green hydrogen production, and emission reduction. The framework evaluates a range of energy storage technologies, including battery, pumped hydro, compressed air energy storage, and hybrid configurations, under realistic system constraints using the IEEE 9-bus test system. Results show that without storage, renewable penetration is limited to 28.65% with 1538 tCO2/day emissions, whereas integrating pumped hydro with battery (PHB) enables 40% penetration, cuts emissions by 40.5%, and reduces total system cost to 570 k$/day (84% of the baseline cost). The framework’s scalability is confirmed via simulations on IEEE 30-, 39-, 57-, and 118-bus systems, with execution times ranging from 118.8 to 561.5 s using the HiGHS solver on a constrained Google Colab environment. These findings highlight PHB as the most cost-effective and sustainable storage solution for large-scale renewable integration.