Skip to content
1900

Carbon Emission Reduction Capability Analysis of Electricity–Hydrogen Integrated Energy Storage Systems

Abstract

Against the dual backdrop of intensifying carbon emission constraints and the large-scale integration of renewable energy, integrated electricity–hydrogen energy systems (EH-ESs) have emerged as a crucial technological pathway for decarbonising energy systems, owing to their multi-energy complementarity and cross-scale regulation capabilities. This paper proposes an operational optimisation and carbon reduction capability assessment framework for EH-ESs, focusing on revealing their operational response mechanisms and emission reduction potential under multi-disturbance conditions. A comprehensive model encompassing an electrolyser (EL), a fuel cell (FC), hydrogen storage tanks, and battery energy storage was constructed. Three optimisation objectives—cost minimisation, carbon emission minimisation, and energy loss minimisation—were introduced to systematically characterise the trade-offs between economic viability, environmental performance, and energy efficiency. Case study validation demonstrates the proposed model’s strong adaptability and robustness across varying output and load conditions. EL and FC efficiencies and costs emerge as critical bottlenecks influencing system carbon emissions and overall expenditure. Further analysis reveals that direct hydrogen utilisation outperforms the ‘electricity–hydrogen–electricity’ cycle in carbon reduction, providing data support and methodological foundations for low-carbon optimisation and widespread adoption of electricity–hydrogen systems.

Funding source: This work is supported by Guangdong Basic and Applied Basic Research Foundation (2024A1515030012).
Related subjects: Applications & Pathways
Loading

Article metrics loading...

/content/journal8013
2025-10-18
2025-12-05
/content/journal8013
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test