Carbon Emission Reduction Capability Analysis of Electricity–Hydrogen Integrated Energy Storage Systems
Abstract
Against the dual backdrop of intensifying carbon emission constraints and the large-scale integration of renewable energy, integrated electricity–hydrogen energy systems (EH-ESs) have emerged as a crucial technological pathway for decarbonising energy systems, owing to their multi-energy complementarity and cross-scale regulation capabilities. This paper proposes an operational optimisation and carbon reduction capability assessment framework for EH-ESs, focusing on revealing their operational response mechanisms and emission reduction potential under multi-disturbance conditions. A comprehensive model encompassing an electrolyser (EL), a fuel cell (FC), hydrogen storage tanks, and battery energy storage was constructed. Three optimisation objectives—cost minimisation, carbon emission minimisation, and energy loss minimisation—were introduced to systematically characterise the trade-offs between economic viability, environmental performance, and energy efficiency. Case study validation demonstrates the proposed model’s strong adaptability and robustness across varying output and load conditions. EL and FC efficiencies and costs emerge as critical bottlenecks influencing system carbon emissions and overall expenditure. Further analysis reveals that direct hydrogen utilisation outperforms the ‘electricity–hydrogen–electricity’ cycle in carbon reduction, providing data support and methodological foundations for low-carbon optimisation and widespread adoption of electricity–hydrogen systems.