A Review on Combustion Instability of Hydrogen-Enriched Marine Gas Turbines
Abstract
Hydrogen is widely regarded as a promising carbon-free alternative fuel. However, the development of low-emission marine gas turbine combustion systems has been hindered by the associated risks of combustion instability, also termed as thermoacoustic oscillations. Although there is sufficient literature on hydrogen fuel and combustion instability, systematic reviews addressing the manifestations and mechanisms of these instabilities remain limited. The present study aims to provide a comprehensive review of combustion instabilities in hydrogen-enriched marine gas turbines, with a particular focus on elucidating the characteristics and underlying mechanisms. The review begins with a concise overview of recent progress in understanding the fundamental combustion properties of hydrogen, and then details various instability phenomena in hydrogen-enriched methane flames. The mechanisms by which hydrogen enrichment affects combustion instabilities are extensively discussed, particularly in relation to the feedback loop in thermoacoustic combustion systems. The paper concludes with a summary of the key combustion instability challenges associated with hydrogen addition to methane flames and offers prospects for future research. In summary, the review highlights the interaction between hydrogenenriched methane flames and thermoacoustic phenomena, providing a foundation for the development of stable, low-emission combustion systems in industrial marine applications incorporating hydrogen enrichment.