Enhancing Power-to-Hydrogen Flexibility Through Optimal Bidding in Nordic Energy Activation Market with Wind Integration
Abstract
The recent updates to the Single Day-Ahead Coupling (SDAC) framework in the European energy market, along with new rules for providing manual frequency restoration reserve (mFRR) products in the Nordic Energy Activation Market (EAM), have introduced a finer Market Time Unit (MTU) resolution. These developments underscore the growing importance of flexible assets, such as power-to-hydrogen (PtH) facilities, in delivering system flexibility. However, to successfully participate in such markets, well-designed and accurate bidding strategies are essential. To fulfill this aim, this paper proposes a Mixed Integer Linear Programming (MILP) model to determine the optimal bidding strategies for a typical PtH facility, accounting for both the technical characteristics of the involved technologies and the specific participation requirements of the mFRR EAM. The study also explores the economic viability of sourcing electricity from nearby wind turbines (WTs) under a Power Purchase Agreement (PPA). The simulation is conducted using a case study of a planned PtH facility at the Port of Hirtshals, Denmark. Results demonstrate that participation in the mFRR EAM, particularly through the provision of downward regulation, can yield significant economic benefits. Moreover, involvement in the mFRR market reduces power intake from the nearby WTs, as capacity must be reserved for downward services. Finally, the findings highlight the necessity of clearly defined business models for such facilities, considering both technical and economic aspects.