Applications & Pathways
Explaining Varying Speeds of Low-carbon Reorientation in the United Kingdom's Steel, Petrochemical, and Oil Refining Industries: A Multi-dimensional Comparative Analysis and Outlook
Feb 2024
Publication
Accelerated decarbonisation of steelmaking oil refining and petrochemical industries is essential for climate change mitigation. Drawing on three longitudinal case studies of these industries in the UK this synthesis article makes a comparative analysis of their varying low-carbon reorientation speeds. The paper uses the triple embeddedness framework to analyse five factors (policy support international competition financial health technical feasibility corporate strategy and mindset) that explain why UK oil refineries have in recent years been comparatively the fastest in their low-carbon reorientation and UK steelmakers the slowest. We find that policy support has been more beneficial for refining and petrochemicals than for steel although recent government deals with steelmakers addressed this imbalance. International competition has been high for steel and petrochemicals and comparatively lower for refining (meaning that decarbonisation costs are less detrimental for international competitiveness). Financial performance has comparatively been worst for steel and best for oil refining which shapes the economic feasibility of low-carbon options. Hydrogen and carbon-capture-and-storage are technologically feasible for refining and petrochemicals while Electric Arc Furnaces are technically feasible for steelmakers but face wider feasibility problems (with scrap steel supply electricity grids and electricity prices) which is why we question the recent government deals. Corporate strategy and perceptions changed in oil refining with firms seeing economic opportunities in decarbonisation while steelmakers and petrochemical firms still mostly see decarbonisation as a burden and threat. The paper ends with comparative conclusions a discussion of political considerations and future outlooks for the three UK industries policy and research.
Prospects of Hydrogen Application as a Fuel for Large-Scale Compressed-Air Energy Storages
Jan 2024
Publication
A promising method of energy storage is the combination of hydrogen and compressed-air energy storage (CAES) systems. CAES systems are divided into diabatic adiabatic and isothermal cycles. In the diabatic cycle thermal energy after air compression is discharged into the environment and the scheme implies the use of organic fuel. Taking into account the prospects of the decarbonization of the energy industry it is advisable to replace natural gas in the diabatic CAES scheme with hydrogen obtained by electrolysis using power-to-gas technology. In this article the SENECA-1A project is considered as a high-power hybrid unit using hydrogen instead of natural gas. The results show that while keeping the 214 MW turbines powered the transition to hydrogen reduces carbon dioxide emissions from 8.8 to 0.0 kg/s while the formation of water vapor will increase from 17.6 to 27.4 kg/s. It is shown that the adiabatic CAES SENECA-1A mode compared to the diabatic has 0.0 carbon dioxide and water vapor emission with relatively higher efficiency (71.5 vs. 62.1%). At the same time the main advantage of the diabatic CAES is the possibility to produce more power in the turbine block (214 vs. 131.6 MW) having fewer capital costs. Thus choosing the technology is a subject of complex technical economic and ecological study.
Hydrogen-Powered Vehicles: Comparing the Powertrain Efficiency and Sustainability of Fuel Cell versus Internal Combustion Engine Cars
Feb 2024
Publication
Due to the large quantities of carbon emissions generated by the transportation sector cleaner automotive technologies are needed aiming at a green energy transition. In this scenario hydrogen is pointed out as a promising fuel that can be employed as the fuel of either a fuel cell or an internal combustion engine vehicle. Therefore in this work we propose the design and modeling of a fuel cell versus an internal combustion engine passenger car for a driving cycle. The simulation was carried out using the quasistatic simulation toolbox tool in Simulink considering the main powertrain components for each vehicle. Furthermore a brief analysis of the carbon emissions associated with the hydrogen production method is addressed to assess the clean potential of hydrogen-powered vehicles compared to conventional fossil fuel-fueled cars. The resulting analysis has shown that the hydrogen fuel cell vehicle is almost twice as efficient compared to internal combustion engines resulting in a lower fuel consumption of 1.05 kg-H2/100 km in the WLTP driving cycle for the fuel cell vehicle while the combustion vehicle consumed about 1.79 kg-H2/100 km. Regarding using different hydrogen colors to fuel the vehicle hydrogen-powered vehicles fueled with blue and grey hydrogen presented higher carbon emissions compared to petrol-powered vehicles reaching up to 2–3 times higher in the case of grey hydrogen. Thus green hydrogen is needed as fuel to keep carbon emissions lower than conventional petrol-powered vehicles.
Operational Optimization of Regional Integrated Energy Systems with Heat Pumps and Hydrogen Renewable Energy under Integrated Demand Response
Jan 2024
Publication
A regional integrated energy system (RIES) synergizing multiple energy forms is pivotal for enhancing renewable energy use and mitigating the greenhouse effect. Considering that the equipment of the current regional comprehensive energy system is relatively simple there is a coupling relationship linking power generation refrigeration and heating in the cogeneration system which is complex and cannot directly meet various load demands. This article proposes a RIES optimization model for bottom-source heat pumps and hydrogen storage systems in the context of comprehensive demand response. First P2G electric hydrogen production technology was introduced into RIES to give full play to the high efficiency advantages of hydrogen energy storage system and the adjustable thermoelectric ratio of the HFC was considered. The HFC could adjust its own thermoelectric ratio according to the system load and unit output. Second through the groundsource heat pump’s cleaning efficiency function further separation and cooling could be achieved. The heat and electrical output of RIES improved the operating efficiency of the system. Thirdly a comprehensive demand response model for heating cooling and electricity was established to enable users to reasonably adjust their own energy use strategies to promote the rational distribution of energy in the system. The model integrates power-to-gas (P2G) technology leveraging the tunable thermoelectric ratio of a hydrogen fuel cell (HFC) to optimize the generation of electricity and heat while maximizing the efficiency of the hydrogen storage system. Empirical analysis substantiated the proposed RIES model’s effectiveness and economic benefits when integrating ground-source HP and electric hydrogen production with IDR. Compared with the original model the daily operating cost of the proposed model was reduced by RMB 1884.16.
A Comprehensive Review on Condition Monitoring and Fault Diagnosis in Fuel Cell Systems: Challenges and Issues
Jan 2024
Publication
The complexity of Fuel Cell (FC) systems demands a profound and sustained understanding of the various phenomena occurring inside of it. Thus far FCs especially Proton Exchange Membrane Fuel Cells (PEMFCs) have been recognized as being among the most promising technologies for reducing Green House Gas (GHG) emissions because they can convert the chemical energy bonded to hydrogen and oxygen into electricity and heat. However their efficiency remains limited. To enhance their efficiency two distinct factors are suggested. First the quality of materials plays a significant role in the development of more robust and efficient FCs. Second the ability to identify mitigate and reduce the occurrence of faults through the use of robust control algorithms is crucial. Therefore more focused on the second point this paper compiles distinguishes and analyzes several publications from the past 25 years related to faults and their diagnostic techniques in FCs. Furthermore the paper presents various schemes outlining different symptoms their causes and corresponding fault algorithms.
Experimental Study of a Homogeneous Charge Compression Ignition Engine Using Hydrogen at High-Altitude Conditions
Feb 2024
Publication
One of the key factors of the current energy transition is the use of hydrogen (H2 ) as fuel in energy transformation technologies. This fuel has the advantage of being produced from the most primary forms of energy and has the potential to reduce carbon dioxide (CO2 ) emissions. In recent years hydrogen or hydrogen-rich mixtures in internal combustion engines (ICEs) have gained popularity with numerous reports documenting their use in spark ignition (SI) and compression ignition (CI) engines. Homogeneous charge compression ignition (HCCI) engines have the potential for substantial reductions in nitrogen oxides (NOx) and particulate matter (PM) emissions and the use of hydrogen along with this kind of combustion could substantially reduce CO2 emissions. However there have been few reports using hydrogen in HCCI engines with most studies limited to evaluating technical feasibility combustion characteristics engine performance and emissions in laboratory settings at sea level. This paper presents a study of HCCI combustion using hydrogen in a stationary air-cooled Lombardini 25 LD 425-2 modified diesel engine located at 1495 m above sea level. An experimental phase was conducted to determine the intake temperature requirements and equivalence ratios for stable HCCI combustion. These results were compared with previous research carried out at sea level. To the best knowledge of the authors this is the first report on the combustion and operational limits for an HCCI engine fueled with hydrogen under the mentioned specific conditions. Equivalence ratios between 0.21 and 0.28 and intake temperatures between 188 ◦C and 235 ◦C effectively achieved the HCCI combustion. These temperature values were on average 100 ◦C higher than those reported in previous studies. The maximum value for the indicated mean effective pressure (IMEPn) was 1.75 bar and the maximum thermal efficiency (ITEn) was 34.5%. The achieved results are important for the design and implementation of HCCI engines running solely on hydrogen in developing countries located at high altitudes above sea level.
Life Cycle Assessment of an Autonomous Underwater Vehicle that Employs Hydrogen Fuel Cell
Aug 2023
Publication
In recent years there has been a significant increase in the adoption of autonomous vehicles for marine and submarine missions. The advancement of emerging imaging navigation and communication technologies has greatly expanded the range of operational capabilities and opportunities available. The ENDURUNS project is a European research endeavor focused on identifying strategies for achieving minimal environmental impact. To measure these facts this article evaluates the product impacts employing the Life Cycle Assessment methodology for the first time following the ISO 14040 standard. In this analysis the quantitative values of Damage and Environmental Impact using the Eco-Indicator 99 methodology in SimaPro software are presented. The results report that the main contributors in environmental impact terms have been placed during the manufacturing phase. Thus one of the challenges is accomplished avoiding the use phase emissions that are the focus to reduce nowadays in the marine industry.
Optimized Scheduling of Integrated Energy Systems Accounting for Hydrogen Energy Multi-Utilization Models
Jan 2024
Publication
To cope with the growing penetration rate of renewable energy and to enhance the absorption capacity of wind power this paper investigates the applications of an Integrated Energy System (IES) Hydrogen Compressed Natural Gas (HCNG) and power-to-hydrogen (P2H) devices within the IES. It employs power-to-gas and gas blending with hydrogen to construct an efficient electricity–gas–electricity energy flow loop establishing a Natural Gas–Electricity Coupling System (NGECS) model. On this basis a coordinated scheduling method for gas–electric coupling systems using gas blended with hydrogen is proposed. A carbon trading mechanism is introduced to constrain carbon emissions further reducing the system’s carbon footprint. Multiple scenarios are set up for a comparative analysis in order to validate the effectiveness of the proposed model. This study also analyzes the impact of different hydrogen blending ratios and methods on the low-carbon and economic performance of IES.
Decarbonizing the Spanish Transportation Sector by 2050: Design and Techno-economic Assessment of the Hydrogen Generation and Supply Chain
May 2023
Publication
The transport sector is difficult to decarbonize due to its high reliance on fossil fuels accounting for 37% of global end-use sectors emissions in 2021. Therefore this work proposes an energy model to replace the Spanish vehicle fleet by hydrogen-fueled vehicles by 2050. Thus six regions are defined according to their proximity to regasification plants where hydrogen generation hubs are implemented. Likewise renewables deployment is subject to their land availability. Hydrogen is transported through an overhauled primary natural gas transport network while two distribution methods are compared for levelized cost of hydrogen minimization: gaseous pipeline vs liquid hydrogen supply in trucks. Hence a capacity of 443.1 GW of renewables 214 GW of electrolyzers and 3.45 TWh of hydrogen storage is required nationwide. Additionally gaseous hydrogen distribution is on average 17% cheaper than liquid hydrogen delivery. Finally all the regions present lower prices per km traveled than gasoline or diesel.
Numerical Analysis of the Hydrogen-air Mixture Formation Process in a Direct-injection Engine for Off-road Applications
Jun 2024
Publication
Among the different hydrogen premixed combustion concepts direct injection (DI) is one of the most promising for internal combustion engine (ICE) applications. However to fully exploit the benefits of this solution the optimization of the mixture preparation process is a crucial factor. In the present work a study of the hydrogenair mixture formation process in a DI H2-ICE for off-road applications was performed through 3D-CFD simulations. First a sensitivity analysis on the injection timing was carried out to select the optimal injection operating window capable of maximizing mixture homogeneity without a significant volumetric efficiency reduction. Then different spray injector guiding caps were tested to assess their effect on in-cylinder dynamics and mixture characteristics consequently. Finally the impact of swirl intensity on hydrogen distribution has been assessed. The optimization of the combustion chamber geometry has allowed the achievement of significant improvements in terms of mixture homogeneity.
Hydrogen Fuel Cell as an Electric Generator: A Case Study for a General Cargo Ship
Feb 2024
Publication
In this study real voyage data and ship specifications of a general cargo ship are employed and it is assumed that diesel generators are replaced with hydrogen proton exchange membrane fuel cells. The effect of the replacement on CO2 NOX SOX and PM emissions and the CII value is calculated. Emission calculations show that there is a significant reduction in emissions when hydrogen fuel cells are used instead of diesel generators on the case ship. By using hydrogen fuel cells there is a 37.4% reduction in CO2 emissions 32.5% in NOX emissions 37.3% in SOX emissions and 37.4% in PM emissions. If hydrogen fuel cells are not used instead of diesel generators the ship will receive an A rating between 2023 and 2026 a B rating in 2027 a C rating in 2028–2029 and an E rating in 2030. On the other hand if hydrogen fuel cells are used the ship will always remain at an A rating between 2023 and 2030. The capital expenditure (CAPEX) and operational expenditure (OPEX) of the fuel cell system are USD 1305720 and USD 2470320 respectively for a 15-year lifetime and the hydrogen fuel expenses are competitive at USD 260981 while marine diesel oil (MDO) fuel expenses are USD 206435.
Thermodynamic Modelling and Optimisation of a Green Hydrogen-blended Syngas-fueled Integrated PV-SOFC System
Sep 2023
Publication
Developing an effective energy transition roadmap is crucial in the face of global commitments to achieve net zero emissions. While renewable power generation systems are expanding challenges such as curtailments and grid constraints can lead to energy loss. To address this surplus electricity can be converted into green hydrogen serving as a key component in the energy transition. This research explores the use of renewable solar energy for powering a proton exchange membrane electrolyser to produce green hydrogen while a downdraft gasifier fed by municipal solid waste generates hydrogen-enriched syngas. The blended fuel is then used to feed a Solid Oxide Fuel Cell (SOFC) system. The study investigates the impact of hydrogen content on the performance of the fuel cell-based power plant from thermodynamics and exergoeconomic perspectives. Multiobjective optimisation using a genetic algorithm identifies optimal operating conditions for the system. Results show that blending hydrogen with syngas increases combined heat and power efficiency by up to 3% but also raises remarkably the unit product cost and reduces carbon dioxide emissions. Therefore the optimal values for hydrogen content current density temperatures and other parameters are determined. These findings contribute to the design and operation of an efficient and sustainable energy generation system.
Numerical Modeling for Analysis and Improvement of Hydrogen Refueling Process for Heavy-duty Vehicles
Dec 2024
Publication
This paper presents the development validation and application of a numerical model to simulate the process of refueling hydrogen-powerd heavy-duty vehicles with a cascade hydrohen refueling station design. The model is implemented and validated using experimental data from SAE J2601. The link between the average pressure ramp (APRR) and flow rate which is responsible for the dynamic evolution of the refueling process was analyzed. Various simulations were conducted with a vehicle tank of 230 L and nominal pressure of 35 MPa typical of tanks adopted in heavy-duty vehicles varying the ambient temperature between 0 and 40 °C the cooling temperature of the hydrogen by the system cooling between −40 and 0 °C and the APRR between 2 and 14 MPa/min. The study found that if the ambient temperature does not exceed 30 °C rapid refueling can be carried out with not very low pre-cooling temperatures e.g. -20 °C or − 10 °C guaranteeing greater savings in station management. Cooling system thermal power has been investigated through the analyses in several scenarios with values as high as 38.2 kW under the most challenging conditions. For those conditions it was shown that energy savings could reach as much as 90 %. Furthermore the refueling process was analyzed taking into account SAE J2061/2 limitations and an update was proposed. An alternative strategy was proposed such that the settings allow a higher flow rate to be associated with a given standard pressure ramp. This approach was designed to ensure that the maximum allowable pressure downstream of the pressure control valve as specified by the refueling protocol is reached exactly at the end of the refueling process. It has been observed that the adoption of this strategy has significant advantages. In the case of refueling with higher APPR refueling is about 20 s faster with a single tank with limited increases in temperature and pressure within it.
Evaluation of Significant Greenhouse Gas Emissions Reduction Using Hydrogen Fuel in a LFG/Diesel RCCI Engine
Jan 2024
Publication
The production of solid waste in human societies and the related environmental and global warming concerns are increasing. Extensive use of existing conventional diesel and dual-fuel engines also causes the production of high levels of greenhouse gases and aggravating the aforementioned concerns. Therefore the aim of this study is to reduce the greenhouse emissions in existing natural gas/diesel dual-fuel heavy-duty diesel engine. For this purpose changing the type of combustion to reactivity-controlled compression-ignition combustion and using landfill gas instead of natural gas in a dual-fuel engine were simultaneously implemented. Moreover a traditional method was used to evaluate the effect of variations in three important parameters on the engine's performance in order to determine the appropriate engine operating ranges. The simulation results indicate that although the consumption of 102000 cubic meters per year of natural gas in each cylinder is reduced only by replacing landfill gas the level of engine greenhouse gas emissions is too high compared to the relevant levels of emissions standards. Hence by keeping the total energy content of the fuels constant landfill gas enrichment with hydrogen was considered to reduce the engine emissions. The simulation results show that by increasing the hydrogen energy share up to 37% the engine load has the potential to be improved up to 7% without any exposure to diesel knock. However the downfall is the reduction in the gross indicated efficiency up to 3%. Meanwhile not only the fifth level of the European emission standard for nitrogen oxides and the sixth level of this standard for carbon monoxide can be achieved but it is also possible to overcome the high level of unburned methane as a drastic greenhouse gas and formaldehyde as a related carcinogenic species.
Renewable Hydrogen and Synthetic Fuels Versus Fossil Fuels for Trucking, Shipping and Aviation: A Holistic Cost Model
Aug 2023
Publication
Potential carbon neutrality of the global trucking shipping and aviation sectors by 2050 could be achieved by substituting fossil fuels with renewable hydrogen and synthetic fuels. To investigate the economic impact of fuel substitution over time a holistic cost model is developed and applied to three case studies in Norway an early adopter of carbon-neutral freight transport. The model covers the value chains from local electricity and fuel production (hydrogen ammonia Fischer–Tropsch e-fuel) to fuel consumption for long-haul trucking short-sea shipping and mid-haul aviation. The estimates are internally consistent and allow cross-mode and cross-fuel comparisons that set this work apart from previous studies more narrowly focused on a given transport mode or fuel. The model contains 150 techno-economic parameters to identify which components along the value chains drive levelized costs. This paper finds a cost reduction potential for renewable fuels of 41% to 68% until 2050 but carbon-neutral transport will suffer asymmetric cost disadvantages. Fuel substitution is most expensive in short-sea shipping followed by mid-haul aviation and long-haul trucking. Cost developments of electricity direct air capture of carbon vehicle expenses and fuel-related payload losses are significant drivers.
Research of Energy Efficiency and Environmental Performance of Vehicle Power Plant Converted to Work on Alternative Fuels
Apr 2024
Publication
The use of alternative fuels remains an important factor in solving the problem of reducing harmful substances caused by vehicles and decarbonising transport. It is also important to ensure the energy efficiency of vehicle power plants when using different fuels at a sufficient level. The article presents the results of theoretical and experimental studies of the conversion of diesel engine to alternative fuels with hydrogen admixtures. Methanol is considered as an alternative fuel which is a cheaper alternative to commercial diesel fuel. The chemical essence of improving the calorific value of alternative methanol fuel was investigated. Studies showed that the energy effect of burning an alternative mixture with hydrogen additives exceeds the effect of burning the same amount of methanol fuel. The increase in combustion energy and engine power is achieved as a result of heat from efficient use of the engine exhaust gases and chemical conversion of methanol. An experimental installation was created to study the work of a converted diesel engine on hydrogen–methanol mixtures and thermochemical regeneration processes. Experimental studies of the energy and environmental parameters of diesel engine converted to work on an alternative fuel with hydrogen admixtures have shown that engine power increases by 10–14% and emissions of harmful substances decrease.
An Optimization-Based Power-Following Energy Management Strategy for Hydrogen Fuel Cell Vehicles
Dec 2024
Publication
This paper presents an energy management algorithm based on an extended proportional integral derivative (PID) controller. To validate the proposed algorithm comprehensive simulation models were developed including a longitudinal dynamics-based vehicle model an ampere–hour integration-based power battery model a fuel cell model based on the Nernst equation and a hydrogen consumption model. An economic assessment was conducted through integrated simulation across all subsystems. The extended PID power regulation method was compared with the conventional power regulation method and the on–off power regulation method in a simulation environment using the China heavy-duty commercial vehicle test cycleB (CHTC-B) criterion. Additionally the power consumption of the lithium battery was converted into equivalent hydrogen consumption combining it with the hydrogen consumption of the fuel cell. The results showed that the extended PID strategy achieves an equivalent hydrogen consumption of 19.64 kg per 100 km compared to 20.41 kg for the traditional power–following strategy and 21.54 kg for the on–off strategy. Therefore the extended PID power–following strategy reduces equivalent hydrogen consumption by 8.8% compared to the on–off strategy and by 3.7% compared to the traditional power–following strategy.
Modelling of Fast Fueling of Pressurized Hydrogen Tanks for Maritime Applications
Apr 2023
Publication
This paper studies fast fueling of gaseous hydrogen into large hydrogen (H2) tanks suitable for maritime applications. Three modeling methods have been developed and evaluated: (1) Two-dimensional computational fluid dynamic (CFD) modeling (2) One-dimensional wall discretized modeling and (3) Zero-dimensional modeling. A detailed 2D CFD simulation of a small H2-tank was performed and validated with data from literature and then used to simulate a large H2-tank. Results from the 2D-model show non-uniform temperature distribution inside the large tank but not in the small H2-tank. The 1D-model can predict the mean temperature in small H2-tanks but not the inhomogeneous temperature field in large H2-tanks. The 0D-model is suitable as a screening tool to obtain rough estimates. Results from the modeling of the large H2-tank show that the heat transfer to the wall during fast filling is inhibited by heat conduction in the wall which leads to an unacceptably high mean hydrogen temperature.
Concept Design and Energy Balance Optimization of a Hydrogen Fuel Cell Helicoptor for Unmanned Aerial Vehicle and Aerotaxi Applications
May 2023
Publication
In the new scenario where the transportation sector must be decarbonized to limit global warming fuel cellpowered aerial vehicles have been selected as a strategic target application to compose part of the urban fleet to minimize road transport congestion and make goods and personal transportation fast and efficient. To address the necessity of clean and efficient urban air transport this work consists of the conceptual development of a lightweight rotary-winged transport vehicle using a hydrogen-based fuel cell propulsion system and the optimization of its energy balance. For that purpose the methods for integrating the coupled aerodynamic and propulsion system sizing and optimization was developed with the aim of designing concepts capable of carrying 0 (unmanned aerial vehicle — Design 1) and 1 (Aerotaxi — Design 2) passengers for a distance of 300 km at a cruise altitude of 500 m with a minimum climbing rate capability of 6 m s−1 at 1000 m. The results show how these designs with the desired performance specifications can be obtained with a vehicle mass ranging from 416 to 648 kg depending on the application and with specific range and endurance respectively within 46.2–47.8 km/kg and 20.4–21.3 min/kg for design 1 and 33.3–33.8 km/kg and 12.5–13.9 min/kg for design 2.
A Novel Scheme to Allocate the Green Energy Transportation Costs—Application to Carbon Captured and Hydrogen
Mar 2023
Publication
Carbon dioxide (CO2 ) and hydrogen (H2 ) are essential energy vectors in the green energy transition. H2 is a fuel produced by electrolysis and is applied in heavy transportation where electrification is not feasible yet. The pollutant substance CO2 is starting to be captured and stored in different European locations. In Denmark the energy vision aims to use this CO2 to be reacted with H2 producing green methanol. Typically the production units are not co-located with consumers and thus the required transportation infrastructure is essential for meeting supply and demand. This work presents a novel scheme to allocate the transportation costs of CO2 and H2 in pipeline networks which can be applied to any network topology and with any allocation method. During the tariff formation process coordinated adjustments are made by the novel scheme on the original tariffs produced by the allocation method employed considering the location of each customer connected to pipeline network. Locational tariffs are provided as result and the total revenue recovery is guaranteed to the network owner. Considering active customers the novel scheme will lead to a decrease of distant pipeline flows thereby contributing to the prevention of bottlenecks in the transportation network. Thus structural reinforcements can be avoided reducing the total transportation cost paid by all customers in the long-term.
No more items...