Applications & Pathways
Copula-based Operation Strategy for Green Hydrogen Production Systems Considering Coordination with Energy Storage Systems
Feb 2025
Publication
A recent consensus to achieve carbon neutrality is promoting interest in the use of hydrogen and management of its production system. Among the several types of hydrogen green hydrogen is of most interest which is produced using power generated from renewable energy sources (RES). However several challenges are encountered in the stable operation of green hydrogen production systems (GHPS) owing to the inherent intermittent and variables characteristics of RES. Although the implementation of energy storage systems (ESS) can aid in compensating for this variability large-scale ESS installations can be economically infeasible. Thus this study seeks an operation strategy suitable for GHPS considering the expected variability of RES and the operational conditions of a relatively small-sized ESS. In particular as state-of-charge management is crucial for operating an ESS with limited capacity this study presents a method to conduct coordinated control between the ESS and electrolyzer. Furthermore considering the characteristics of the GHPS the expected short-term variability analyzed using the copula-based approach is utilized. The proposed method is validated based on various RES generation scenarios. By applying the developed method operational continuity to GHPS is expected to increase with efficiency.
How Hydrogen Injection Impacts Reacting Flow in an Ironmaking Blast Furnace: An Industrial-scale CFD-DEM Study
Feb 2025
Publication
Hydrogen injection (HI) is an emerging decarbonisation technology for ironmaking blast furnaces (BFs) yet its impact on the in-furnace phenomenon in the raceway of an industry BF remains unclear. In this study an industrialscale Reactive Computational Fluid Dynamic Discrete Element Method coupling model (rCFD-DEM) is developed to study the impacts of HI on the raceway dynamics and coke combustion inside an industrial-scale BF. To overcome the limit in previous CFD-DEM works this work considers the impact of top loading on the in-raceway reacting flow for the first time. The comparisons show that the raceway size is sensitive to the top loading ratio suggesting that the top loading should be considered in future raceway modelling. Then the quantitative effect of the HI rate is numerically evaluated. It is indicated that when the HI rate increases from zero to 8 kg/tHM the raceway height and depth increase by 95% and 81% respectively under the investigated conditions. The underlying mechanism is explored: the increase in HI rate leads to an increase in inter-phase drag force and interparticle collision and in the convection and radiation heat transfer rates by 33 and 32 times respectively. This study provides a cost-effective tool to understand and optimise HI in industrial-scale BFs for a lower carbon footprint empowering the steel industry with crucial insights.
A Comparative Analysis of the Efficiency Coordination of Renewable Energy and Electric Vehicles in a Deregulated Smart Power System
Mar 2025
Publication
Deregulation in the energy sector has transformed the power systems with significant use of competition innovation and sustainability. This paper outlines a comparative study of renewable energy sources with electric vehicles (RES-EV) integration in a deregulated smart power system to highlight the learning on system efficiency effectiveness viability and the environment. This study depicts the importance of solar and wind energy in reducing carbon emissions and the challenges of integrating RES into present energy grids. It touches on the aspects of advanced energy storage systems demand-side management (DSM) and smart charging technologies for optimizing energy flows and stabilizing grids because of fluctuating demands. Findings were presented to show that based on specific pricing thresholds hybrid renewable energy systems can achieve grid parity and market competitiveness. Novel contributions included an in-depth exploration of the economic and technical feasibility of integrating EVs at the distribution level improvements in power flow control mechanisms and strategies to overcome challenges in decentralized energy systems. These insights will help policymakers and market participants make headway in the adoption of microgrids and smart grids within deregulated energy systems which is a step toward fostering a sustainable and resilient power sector.
Integration of a Model-based System Engineering Framework with Safety Assessment for Early Design Phases: A Case Study for Hydrogen-based Aircraft Fuel System Architecting
Feb 2025
Publication
Novel hydrogen-based aircraft concepts pose significant challenges for the system development process. This paper proposes a generic adaptable and multidisciplinary framework for integrated model-based systems engineering (MBSE) and model-based safety assessment (MBSA) for the conceptual design of complex systems. The framework employs a multi-granularity modelcentric approach whereby the architectural specification is utilized for design as well as query purposes as part of a qualitative and quantitative graphbased preliminary safety assessment. For the qualitative assessment design and safety rules based on existing standards and best practices are formalized in the model and applied to a graph-based architecture representation. Consequently the remaining architectures are quantitatively assessed using automated fault trees. This safety-integrated approach is applied to the conceptual design of a liquid hydrogen fuel system architecture as a novel uncertain and complex system with many unknown system interrelations. This paper illustrates the potential of a combined MBSE-MBSA framework to streamline complex early-stage system design and demonstrates that all qualitatively down-selected hydrogen system architecture variants also satisfy quantitative assessment. Furthermore it is shown that the design space of novel systems is also constrained by safety and certification requirements significantly reducing the number of actual feasible solutions.
Unveiling Cutting-edge Innovations Toward Green Vehicle Technology
Mar 2025
Publication
Environmental concerns and the imperative to achieve net-zero carbon emissions have driven the exploration of efficient and sustainable advancements in automobile technologies. The automotive sector is undergoing a significant transformation primarily propelled by the adoption of green fuel technologies. Among the most promising innovations are green vehicle technologies and the integration of non-conventional power sources including advanced batteries (featuring high energy density) fuel cells (capable of long-range energy generation with water as the sole byproduct) and super-capacitors (characterized by rapid charge–discharge capabilities). This article examines the performance efficiency and adaptability of these power sources for electric vehicles (EVs) providing a comprehensive comparison of their functional capabilities. Additionally it analyzes the integration of super-capacitors with batteries and fuel cells emphasizing the potential of hybrid systems to enhance vehicle performance optimize energy management and extend operational range. The role of power converters in such systems is also discussed underscoring their critical importance in ensuring efficient energy transfer and effective energy management.
Public Acceptance of a Proposed Sub-Regional, Hydrogen–Electric, Aviation Service: Empirical Evidence from HEART in the United Kingdom
Apr 2025
Publication
This paper addresses public acceptance of a proposed sub-regional hydrogen– electric aviation service reporting initial empirical evidence from the UK HEART project. The objective was to assess public acceptance of a wide range of service features including hydrogen power electric motors and pilot assistance automation in the context of an ongoing realisable commercial plan. Both qualitative and quantitative data collection instruments were leveraged including focus groups and stakeholder interviews as well as the questionnaire-based Scottish National survey coupled with the advanced discretechoice modelling of the data. The results from each method are presented compared and contrasted focusing on the strength reliability and validity of the data to generate insights into public acceptance. The findings suggest that public concerns were tempered by an incomplete understanding of the technology but were interpretable in terms of key service elements. Respondents’ concerns and opinions centred around hydrogen as a fuel singlepilot automation safety and security disability and inclusion environmental impact and the perceived usefulness of novel service features such as terminal design automation and sustainability. The latter findings were interpreted under a joint framework of technology acceptance theory and the diffusion of innovation. From this we drew key insights which were presented alongside a discussion of the results.
Techno-economic Assessment of Hydrogen Application in Cereal Crop Farming
Mar 2025
Publication
The application of hydrogen in modern farming is transitioning from a conceptual idea to a practical reality poised to meet future agricultural machinery requirements and transition goals. Increasing tensions between farmers and various institutions underscore the growing sensitivity around fossil fuel dependency in the agricultural sector particularly in northern economies. This study investigates the economic feasibility of using decentralized hydrogen systems to fully replace fossil fuels in cereal crop farming across four agricultural zones. Specifically it examines the economic viability of on-farm hydrogen production using electrolysers to meet the fuel needs of different farm structures. Various scenarios were modelled to assess the impact of switching to hydrogen fuel for annual farm operations using Net Present Value (NPV) and Levelized Cost of Hydrogen (LCOH) metrics for hydrogen refuelling facilities on distinct farm structures. The results indicate that economic feasibility is a significant challenge with LCOH reaching as high as 57 €/kg of hydrogen in some cases while the bestcase scenarios achieved LCOH as low as 7.5 €/kg. These figures remain significantly higher than those for diesel and alternative fuels such as methane FAME and HVO. The study also assessed strategies for reducing hydrogen production costs using low-cost electricity and maximizing plant efficiency by increasing the electrolyser utilization rate to 70%. Additionally the potential for revenue generation through the sale of by-products was explored. Our findings highlight both the challenges and opportunities associated with hydrogen use in agriculture emphasizing the critical role of access to renewable energy sources and the economic limitations of byproduct revenue streams. In conclusion while decentralized hydrogen production can contribute to emission reductions in cereal crop farming further research and policy support are essential to improve its feasibility and sustainability.
Interplay Between Renewable Energy Factor and Levelised Costs in PV-driven Buildings using Hydrogen Fuel Cell System as an Energy Storage Solution
Apr 2025
Publication
This study introduces an effective analysis framework for exploring the complex interrelation between the renewable energy factor (REF) and the economic dimensions of a PV-driven microgrid featuring a dual-level storage system that incorporates both hydrogen and electrical energy storage. By establishing a coupled model that integrates dynamic simulations with a statistical multi-objective optimization algorithm the research aims to achieve optimal component sizing—a critical step in assessing the hybrid system across various REF levels—while effectively reducing the levelized cost of electricity (LCOE). Using the analysis outcomes of a case study a comprehensive techno-economic assessment facilitates a nuanced evaluation of the interplay between the REF system economics across various equipment cost quartiles and grid tariffs addressing the feasibility of the proposed solution for a sustainable energy transition. The results highlight how grid tariffs and REF jointly influence LCOE values across cost quartiles impacting hybrid system design and decision-making. An exponential correlation is observed between life cycle cost (LCC) and REF with the increase in annual operating costs being marginal compared to the initial cost rise. For the net-zero energy case the LCOE ranges from 0.0380 to 0.1873 $/kWh while at REF = 0.6 it spans from 0.0461 to 0.1334 $/kWh reflecting a 71 % larger difference (range). A sensitivity analysis indicates that each 5 % increase in REF leads to an average 20.7 % rise in payback period (PBP) for a given grid tariff.
An Economic and Environmental Assessment of Different Bus Powertrain Technologies in Public Transportation
Dec 2024
Publication
Hydrogen and electric buses are considered effective options for decarbonizing the public transportation sector positioning them as a leader in this transition. This study models the environmental and economic performances of a set of bus powertrain technologies considering a real case-study of suburban public transport in Italy and including fuel cell electric vehicles (FCEV) battery electric vehicles (BEV) biomethane-powered vehicles (CBM) natural gas (CNG) and diesel buses. The environmental performances of FCEV and BEV are significantly influenced by the energy source used for hydrogen production or battery charging. Specifically using the electricity mix for FCEV leads to the highest greenhouse gas emissions and fossil fuel demand. In contrast BEV show better environmental performance than conventional powertrains especially when powered by photovoltaics. When powered by photovoltaics BEV reveal similar results to FCEV in terms of environmental impacts except for resource depletion where both perform poorly. Transitioning from diesel to BEV or FCEV can enhance local air quality regardless of the energy source. The economic analysis indicates that FCEV are the most expensive option followed by BEV both of which are currently costlier than diesel and CNG systems. CBM from waste streams emerges as a cost-effective and environmentally friendly solution. This study suggests prioritizing biomethane derived from biowaste manure and residual biomass (excluding energy crops) as a part of the fuels for public transport decarbonization in the EU to advance EU decarbonization goals despite limitations due to resource availability. Furthermore BEV powered by renewables should be prioritized whenever their range is adequate.
Planning LH2 Infrastructure for H2-powered Aviation: From the Initial Development to Market Penetration
Aug 2025
Publication
To enable hydrogen-powered aircraft operations liquid hydrogen infrastructure has to be planned well in advance. This study analyses the transition pathway of liquid hydrogen supply infrastructure from the initial development phase to market penetration optimizing the design and dispatch of the system. The findings reveal that the single-year approach used in previous studies significantly underestimates the costs associated with supply infrastructure. During the transition phase substantial investments are required in specific years leading to high supply costs particularly in the early years. Off-take agreements could be used to achieve a more balanced cost distribution. For the considered location of a generic airport on-site liquid hydrogen supply costs range between 3.83 and 5.03 USD/kgH2 assuming a long-term supply agreement. At a less favourable airport supply costs are 29% higher compared to a favourable location. However costs could be reduced by up to 12% if hydrogen is imported via vessels or the European Hydrogen Backbone. The primary factors influencing supply costs are the availability of renewable energy resources and the distances to the nearest port as well as hydrogen production hubs. Therefore the optimal supply chain must be assessed individually for each airport. Overall this study provides insights and a methodology that can support the development of future liquid hydrogen infrastructure roadmaps for hydrogen-powered aviation.
A Methodology for Quantitative Risk Assessment of a High-capacity Hydrogen Fueling Station with Liquid Hydrogen Storage
Mar 2025
Publication
Hydrogen fueling stations are critical infrastructure for deploying zero emission hydrogen fuel cell electric vehicles (FCEV). Stations with greater dispensing capacities and higher energy efficiency are needed and cryogenic liquid hydrogen (LH2) has the potential to meet these needs. It is necessary to ensure that hazards and risks are appropriately identified and managed. This paper presents a Quantitative Risk Assessment (QRA) methodology for high-capacity (dispensing >1000 kg/day) hydrogen fueling stations with liquid hydrogen storage and presents the application of that methodology by presenting a Failure Mode and Effect Analysis (FMEA) and data curation for the design developed for this study. This methodology offers a basis for risk and reliability evaluation of these systems as their designs evolve and as operational data becomes available. We developed a generic station design and process flow diagram for a high-capacity hydrogen fueling station with LH2 storage. Following the system description is hazard identification done from FMEA to identify the causes of hydrogen releases and the critical components causing the releases. Finally data collection and curation is discussed including challenges stemming from the limited public availability of reliability data on components used in liquid hydrogen systems. This paper acts as an introduction to the full QRA presented in its companion paper Schaad et al. [1].
Energy Advancements and Integration Strategies in Hydrogen and Battery Storage for Renewable Energy Systems
Mar 2025
Publication
The long term and large-scale energy storage operations require quick response time and round-trip efficiency which is not feasible with conventional battery systems. To address this issue while endorsing high energy density long term storage and grid adaptability the hydrogen energy storage (HES) is preferred. This proposed work makes a comprehensive review on HES while synthesizing recent research on energy storage technologies and integration into renewable energy (RE) applications. The proposed research also identifies critical challenges related to system optimization energy management strategies and economic viability while featuring emerging technologies like artificial intelligence (AI) and machine learning (ML) for energy management. The proposed survey also discusses key advancements in battery technologies (lithium-ion Ni-Cd Ni/MH and flow batteries) which are examined alongside innovations in HES methods. The proposed survey utilizes an extensive list of publications to date in the open literature to canvass and portray various developments in this area.
Reconfiguring Industry in the United Kingdom. Global Lessons for Ambition Versus Policy on the Path Towards Net-zero
Aug 2025
Publication
High-emitting industrial processes are often concentrated in clusters that share infrastructure to maximise efficiency and reduce costs. These clusters prevalent in many industrialised economies pose significant challenges for decarbonisation due to their dependence on energy-intensive systems and legacy assets. Carbon capture and storage (CCS) is frequently promoted as a key solution for reducing emissions in these hard-to-abate sectors. Drawing on an adapted ‘Multi-Level Perspective’ framework (Geels and Turnheim 2022) this paper examines how industrial practices are being reconfigured in response to decarbonisation imperatives. While our study focuses on the UK the findings have broader relevance to other industrialised nations pursuing a similar strategy. We observe a dominant reliance on fuel switching and CCS characterising the innovation style as ‘modular substitution’; incremental changes that replace individual components without fundamentally transforming the overall system. This pattern suggests a gap between ambitious climate commitments and the depth of systemic change being pursued. Without more comprehensive strategies there is a growing risk of delayed emissions reductions and increased residual emissions both contributing to the overshooting of carbon budgets which will be compounded if replicated across industrial sectors worldwide.
Is the Promotion Policy for Hydrogen Fuel Cell Vehicles Effective? Evidence from Chinese Cities
Mar 2025
Publication
China has emerged as a global leader in promoting new energy vehicles; however the impact of these efforts on the commercial vehicle sector remains limited. Hydrogen fuel cell vehicles are crucial for improving the environmental performance of commercial vehicles in China. This study evaluates the effectiveness of China’s Hydrogen fuel cell vehicle policies. Firstly an evaluation index system for hydrogen fuel cell vehicle policies is established quantifying the policy through two key metrics: policy comprehensiveness and policy synergy. Subsequently city-level data from 84 municipalities (2018-2022) are analyzed to assess policy impacts on hydrogen fuel cell vehicles adoption. The results show that both policy comprehensiveness and synergy significantly drive hydrogen fuel cell vehicle sales growth. Early sales figures also strongly influence current trends. Therefore promoting growth in hydrogen fuel cell vehicle sales can further enhance policy efforts while also accounting for the cumulative effects of initial promotional activities.
The Role of Integrated Multi-Energy Systems Toward Carbon-Neutral Ports: A Data-Driven Approach Using Empirical Data
Feb 2025
Publication
Ports are critical hubs in the global supply chain yet they face mounting challenges in achieving carbon neutrality. Port Integrated Multi-Energy Systems (PIMESs) offer a comprehensive solution by integrating renewable energy sources such as wind photovoltaic (PV) hydrogen and energy storage with traditional energy systems. This study examines the implementation of a real-word PIMES showcasing its effectiveness in reducing energy consumption and emissions. The findings indicate that in 2024 the PIMES enabled a reduction of 1885 tons of CO2 emissions with wind energy contributing 84% and PV 16% to the total decreases. The energy storage system achieved a charge–discharge efficiency of 99.15% while the hydrogen production system demonstrated an efficiency of 63.34% producing 503.87 Nm3/h of hydrogen. Despite these successes challenges remain in optimizing renewable energy integration expanding storage capacity and advancing hydrogen technologies. This paper highlights practical strategies to enhance PIMESs’ performances offering valuable insights for policymakers and port authorities aiming to balance energy efficiency and sustainability and providing a blueprint for carbon-neutral port development worldwide.
Enhancing Diesel Engine Performance Through Hydrogen Addition
May 2025
Publication
This study evaluates the potential of hydrogen as a clean additive to conventional diesel fuel. Experiments were carried out on a single-cylinder air-cooled diesel engine under half- and full-load conditions across engine speeds ranging from 1000 to 3000 rpm. Hydrogen produced on site via a proton exchange membrane electrolyser was supplied to the engine at a constant flow rate of 0.5 L/min. Compared to pure diesel the hydrogen–diesel blend reduced specific fuel consumption by 10% and increased brake thermal efficiency by 10% at full load. Emissions of carbon monoxide and carbon dioxide decreased by 13% and 17% respectively at half load. Additionally nitrogen oxide emissions dropped by 17%. These results highlight the potential of hydrogen to improve combustion efficiency while significantly mitigating emissions offering a viable transitional solution for cleaner power generation using existing diesel infrastructure.
Design and Simulation of an Integrated Process for the Co-Production of Power, Hydrogen, and DME by Using an Electrolyzer’s System
May 2025
Publication
The increasing global demand for clean energy and sustainable industrial processes necessitates innovative approaches to energy production and chemical synthesis. This study proposed and simulated an innovative integrated system for the co-production of power hydrogen and dimethyl ether (DME) combining the high-efficiency Allam– Fetvedt cycle with co-electrolysis and indirect DME synthesis. The Allam–Fetvedt cycle generated electricity while capturing CO2 which along with water was used in solid oxide electrolyzers (SOEs) to produce syngas via co-electrolysis. The resulting syngas was converted to methanol and subsequently to DME. Aspen HYSYS was used to model and simulate the process and heat/mass integration strategies were implemented to reduce energy demand and optimize resource utilization. The proposed integrated process enabled an annual production of 980021 metric tons of DME 189435 metric tons of hydrogen and 7698.27 metric tons of methanol. The energy efficiency of the Allam–Fetvedt cycle reached 55% and heat integration reduced the system’s net energy demand by 14.22%. Despite the high energy needs of the electrolyzer system (81.28% of net energy) the overall energy requirement remained competitive with conventional methods. Carbon emissions per kilogram of DME were reduced from 1.16 to 0.77 kg CO2 through heat integration and can be further minimized to 0.0308 kg CO2/kg DME (near zero) with renewable electrification. Results demonstrated that 96% of CO2 was recycled within the Allam–Fetvedt cycle and the rest (the 4% of CO2) was captured and converted to syngas achieving net-zero carbon emissions. This work presents a scalable and sustainable pathway for integrated clean energy and chemical production advancing toward industrial net-zero targets.
Study of the Hydrogen Influence on the Combustion Parameters of Diesel Engine
Apr 2025
Publication
The article presents the results of an experimental study on the influence of hydrogen as gaseous fuel on the combustion process parameters of a single-cylinder diesel engine operating in dual-fuel mode. The study is conducted at an average engine speed of n = 2000 min⁻ 1 four engine load levels and two different diesel fuel injection timing angles. Indicator diagrams are recorded for each operating mode at varying hydrogen mass fractions in the total fuel supplied to the engine. The data from the indicator diagrams are processed using a developed software that enables the determination of combustion process parameters. The analysis of the experimental results focuses on changes in cylinder temperature the coefficients of total and active heat release the rate of heat release the duration of the combustion process phases and other parameters as a function of the hydrogen mass fraction in the total fuel mixture.
Workshop with Hydrogen Cells: A Pedagogical and Motivating Experience for the Study of Unconventional Forms of Energy Generation in Pre-School Students in Panama City
May 2025
Publication
It is essential to promote the study of non-conventional forms of electrical energy generation to create a resilient society with awareness of and the capacity for development and experimentation to face environmental conservation challenges especially from secondary education. From a mixed methodological approach this study presents workshops with hydrogen cells to strengthen educational skills and boost the interest of 44 high school students. The methodology followed five main points: carrying out a pre-evaluation to measure prior knowledge an induction related to concepts of electronics and hydrogen cells tests with a hydrogen kit the presentation of final projects post-evaluation of knowledge and the application of a survey of motivation. Observation experimentation analysis and dissemination of results helped strengthen students’ theoretical practical and scientific knowledge. These activities awakened their interest in this type of technology as evidenced in the results of the evaluations surveys and project quality. This demonstrates the validity of hydrogen cell workshops as a valuable technique to enhance learning and motivate students to study unconventional forms of electrical energy generation.
Assessing Uninstalled Hydrogen-Fuelled Retrofitted Turbofan Engine Performance
Mar 2025
Publication
Hydrogen as fuel in civil aviation gas turbines is promising due to its no-carbon content and higher net specific energy. For an entry-level market and cost-saving strategy it is advisable to consider reusing existing engine components whenever possible and retrofitting existing engines with hydrogen. Feasible strategies of retrofitting state-of-theart Jet A-1 fuelled turbofan engines with hydrogen while applying minimum changes to hardware are considered in the present study. The findings demonstrate that hydrogen retrofitted engines can deliver advantages in terms of core temperature levels and efficiency. However the engine operability assessment showed that retrofitting with minimum changes leads to a ~5% increase in the HP spool rotational speed for the same thrust at take-off which poses an issue in terms of certification for the HP spool rotational speed overspeed margin.
No more items...