Applications & Pathways
Comprehensive Review of Hydrogen and Tyre Pyrolysis Oil as Sustainable Fuels for HCCI Engines
Aug 2025
Publication
This review article provides an overview of the use of hydrogen and tyre pyrolysis oil as fuels for homogeneous charge compression ignition (HCCI) engines. It discusses their properties the ways they are produced and their sustainability which is of particular importance in the present moment. Both fuels have certain advantages but also throw up many challenges which complicate their application in HCCI engines. The paper scrutinises engine performance with hydrogen and tyre pyrolysis oil respectively and compares the fuels’ emissions a crucial focus from an environmental perspective. It also surveys related technologies that have recently emerged their effects and environmental impacts and the rules and regulations that are starting to become established in these areas. Furthermore it provides a comparative discussion of various engine performance data in terms of combustion behaviour emission levels fuel economy and potential costs or savings in real terms. The analysis reveals significant research gaps and recommendations are provided as to areas for future study. The paper argues that hydrogen and tyre pyrolysis oil might sometimes be used together or in complementary ways to benefit HCCI engine performance. The importance of life-cycle assessment is noted acknowledging also the requirements of the circular economy. The major findings are summarised with some comments on future perspectives for the use of sustainable fuels in HCCI engines. This review article provides a helpful reference for researchers working in this area and for policymakers concerned with establishing relevant legal frameworks as well as for companies in the sustainable transport sector.
Strategies for Decarbonizing the Aviation Sector: Evaluating Economic Competitiveness of Green Hydrogen Value Chains - A Case Study in France
Dec 2024
Publication
Even if the aviation sector only accounts for 2% of global energy-related CO2 emissions and is the most challenging sector to decarbonize. As aviation demand grows and the need for sustainable jet fuels becomes urgent green hydrogen could substitute conventional fossil fuels thereby enabling carbon-free flights. This study investigates a techno-economic analysis of onsite versus off-site green hydrogen supply chains. A case study at the Toulouse-Blagnac airport (Europe’s first station for the production and distribution of renewable hydrogen) in France is developed to meet commercial aviation's hydrogen fuel demand between 2025 and 2050. Demand of hydrogen is projected based on the trend of jet fuel consumption. First the cost of solar-based renewable electricity is estimated at the two green hydrogen production sites using levelized cost of electricity production. Second levelized cost of hydrogen (LCOH) is evaluated for three value chain scenarios: one on-site (Toulouse airport) and two off-site (Marseille) for gaseous and cryogenic transportation of liquid hydrogen (LH2). A relative cost advantage is shown for the off-site case with cryogenic truck transportation at LCOH of €9.43/kg.LH2. This study also reveals the importance of electricity price investment costs operation costs economies of scale and transportation distance in different scenarios.
Decarbonizing Arctic Mining Operations with Wind-Hydrogen Systems: Case Study of Raglan Mine
Oct 2025
Publication
This study evaluates the techno-economic feasibility of integrating wind power with hydrogen-based storage to decarbonize the Raglan Mine in northern Canada. Using HOMER simulations with real 2021 operational data six progressive scenarios were modeled ranging from partial substitution of diesel generators to complete site-wide electrification including heating transport and mining equipment. Results show that complete decarbonization (Scenario 6) is technically achievable and could avoid up to 143000 tCO2eq annually (~2.15 Mt over 15 years) but remains economically prohibitive under current technology costs. In contrast Scenario 2 Case 2 which combines solid oxide fuel cells with thermal charge controllers emerges as the most viable near-term pathway avoiding ~61000 tCO2eq annually (~0.91 Mt over 15 years) while achieving improved return on investment. A qualitative multi-criteria framework highlights this configuration as the best trade-off between technical feasibility environmental performance and economic viability. At the same time complete decarbonization remains a longer-term target contingent on cost reductions and policy support. Overall the findings provide clear evidence that hydrogen storage when coupled with wind power can deliver substantial and measurable decarbonization benefits for Arctic mining operations.
Fuel Cells: A Technical, Environmental, and Economic Outlook
Dec 2024
Publication
In the pursuit of establishing a sustainable fuel cell (FC) energy system this review highlights the necessity of examining the operational principles technical details environmental consequences and economic concerns collectively. By adopting an integrated approach the review research into various fuel cells types extending their applications beyond transportation and evaluating their potential for seamless integration into sustainable practices. A detailed analysis of the technical aspects including FC membranes performance and applications is presented. The environmental impact of hydrogen generation through fuel cell/electrolyzer is quantitatively assessed emphasizing a comparative emission footprint against traditional hydrogen generation methods. Economic considerations of fuel cell technology adoption are explored through an extensive examination of market growth and forecasts and investments into the FC systems. Some flagship commercial projects of FC technology are also discussed along with their future prospective. The article concludes with a thorough analysis of challenges associated with FC adoption encompassing membrane research performance hurdles infrastructure development and application-specific challenges. This all-round review serves as an indispensable tool for academicians and policymakers providing a directed and comprehensive FC perspective.
Technoeconomic Optimisation and Sentivity Analysis of Off-grid Hybrid Renewable Energy Systems: A Case Study for Sustainable Energy Solutions in Rural India
Dec 2024
Publication
In the twenty-first century global energy consumption is rapidly increasing particularly in emerging nations hastening the depletion of fossil fuel reserves and emphasizing the vital need for sustainable and renewable energy sources. This study aims to analyze hybrid renewable energy systems (HRESs) that use solid waste to generate power focusing on difficulties linked to intermittent renewable sources using a techno-economic framework. Employing the HOMER Pro software prefeasibility analysis is performed to meet the energy needs of an Indian community. System architecture optimization depends on factors like minimizing net present cost (NPC) achieving the lowest cost of energy (COE) and maximizing renewable source utilization. This study evaluates the technical economic and environmental feasibility of a hybrid renewable energy system (HRES) comprising a 400-kW solar photovoltaic (PV) array a 100-kW wind turbine (WT) a 100-kW electrolyzer 918 number of 12V batteries a 200-kW converter a 200-kW reformer and a 15-kg hydrogen tank (H-tank). This optimal configuration has the lowest NPC of $26.8 million and COE of $4.32 per kilowatt-hour and a Renewable Fraction (RF) of 100%. It can provide a dependable power supply and satisfy 94% of the daily onsite load demand which is 1080 kilowatt-hours per day. The required electricity is sourced to load demand entirely from renewable energy at the given location. Additionally the study highlights the benefits of HRES in solid waste management considering technological advancements and regulatory frameworks. Furthermore sensitivity analysis is conducted to measure economic factors that influence HRES accounting for fluctuations in load demand project lifespan diesel fuel costs and interest rates. Installing an HRES custom-made to the local environmental conditions would provide a long-lasting reliable and cost-effective energy source. The results show that the optimal HRES system performs well and is a viable option for sustainable electrification in rural communities.
Low-carbon Economic Dispatch of Integrated Energy system with Carbon Capture Power Plant and Multiple Utilization of Hydrogen Energy
Jan 2025
Publication
In the context of “dual carbon” in order to promote the consumption of renewable energy and improve energy utilization efficiency a low-carbon economic dispatch model of an integrated energy system containing carbon capture power plants and multiple utilization of hydrogen energy is proposed. First introduce liquid storage tanks to transform traditional carbon capture power plants and at the same time build a multi-functional hydrogen utilization structure including two-stage power-to-gas hydrogen fuel cells hydrogen storage tanks and hydrogen-doped cogeneration to fully exploit hydrogen. It can utilize the potential of collaborative operation with carbon capture power plants; on this basis consider the transferability and substitutability characteristics of electric heating gas load and construct an electric heating gas comprehensive demand response model; secondly consider the mutual recognition relationship between carbon quotas and green certificates Propose a green certificate-carbon trading mechanism; finally establish an integrated energy system with the optimization goal of minimizing the sum of energy purchase cost demand response compensation cost wind curtailment cost carbon storage cost carbon purchase cost carbon trading cost and green certificate trading compensation. Optimize scheduling model. The results show that the proposed model can effectively reduce the total system cost and carbon emissions improve clean energy consumption and energy utilization and has significant economical and low-carbon properties.
Everything About Hydrogen Podcast: Sustainable Shipping
Nov 2023
Publication
The teams sits down with Johannah Christensen to discuss regulatory policies and risk mitigation for vessel owners switching to green fuels and what we can do to encourage that jump as well as ensure a Just Transition.
The podcast can be found on their website.
The podcast can be found on their website.
Modelling Thermodiffusive Instabilities in Hydrogen Flames and their Impact on the Combustion Process in a Direct-injection Hydrogen Engine
Sep 2025
Publication
Hydrogen-fueled Internal Combustion Engines (H2-ICEs) are typically operated with lean mixtures to minimize NOx emissions and reduce the risk of abnormal combustion events. Due to hydrogen’s low Lewis number premixed hydrogen-air flames in lean conditions exhibit strong thermodiffusive instabilities which make the numerical simulation of the combustion process particularly challenging. Indeed the intensity of these instabilities is significantly influenced by thermodynamic parameters – such as mixture temperature pressure and dilution rate – resulting in substantial variations in combustion behaviour across different operating conditions. Therefore they have to be properly considered not only to ensure model robustness but also to improve model accuracy over a wider range of operations. In this study the combustion process in a Direct Injection H2-ICE was analyzed using 3D-CFD simulations relying on a flamelet-based combustion model. Two sets of lookup flame speed maps were defined: laminar flame speed (SL) maps derived from standard 1D-CFD simulations in homogeneous reactor and freely propagating flame speed (SM) maps which account for the effects of thermodiffusive instabilities. The model that uses SL maps required the recalibration of some combustion model parameters when changing the dilution rate to ensure consistency with experimental data. Instead the model relying on SM maps featured a noticeable accuracy across different air-to-fuel ratios without the need for recalibration any combustion model parameter highlighting the key role of thermodiffusive flame instabilities on the combustion process. Based on these findings the impact of such instabilities was evaluated throughout the entire combustion process from both global and local perspectives. The relevance of thermodiffusive instabilities was observed to increase with the air-to-fuel ratio thereby enhancing combustion speed in leaner mixtures. Additionally the implementation of thermodiffusive instabilities was found to affect also preferred direction of flame propagation as stronger instabilities were identified in the leanest and low-temperature portions of the flame front. Novelty and significance This study addresses a critical knowledge gap regarding the role of thermodiffusive flame instabilities in accurately replicating the combustion process of a direct-injection internal combustion engine within a RANS simulation framework. Indeed while these instabilities have been shown to significantly enhance the mixture consumption rate in quiescent environments at low to moderate pressures and temperatures particularly in lean mixtures their impact on the burn rate under engine-like conditions has not yet been systematically investigated to the best of the authors’ knowledge. This work provides a comprehensive analysis of the significance of these instabilities in the combustion process of a direct-injection hydrogen internal combustion engine. The analysis is conducted from both a global perspective assessing their overall influence on the combustion process and a local perspective examining how they alter flame front characteristics when incorporated into the model.
Systematic Framework for Deep Learning-based Predictive Injection Control with Bayesian Hyperparameter Optimization for a Hydrogen/Diesel Dual-fuel Engine
Aug 2025
Publication
Climate change and global warming concerns promote interest in alternative fuels especially zero-carbon fuels like hydrogen. Modifying existing combustion engines for dual-fuel operation can decrease emissions of vehicles that are already on the road. The procedure of a deep learning-based model predictive control as a machine learning implementation practical for complex nonlinear systems with input and state constraints has been developed and tested on a hydrogen/diesel dual-fuel (HDDF) engine application. A nonlinear model predictive controller (NMPC) utilizing a deep neural network (DNN) process model is proposed to control the injected hydrogen and diesel. This DNN model has eight inputs and four outputs and has a short computational time compared to the physics-based model. The architecture and hyperparameters of the DNN model of the HDDF process are optimized through a two-stage Bayesian optimization to achieve high accuracy while minimizing the complexity of the model described. The final DNN architecture has two hidden layers with 31 and 23 neurons. A modified engine capable of HDDF operation is compared to standard diesel operation to evaluate the engine performance and emissions. During experimental engine testing the controller required an average computational time of 2 ms per cycle on a low-cost processor satisfying the real-time requirements and was faster than recurrent networks. The control performance of the DNN-NMPC for the HDDF engine showed a mean absolute error of 0.19 bar in load tracking while maximizing average hydrogen energy share (68%) and reducing emissions. Specifically the particulate matter emissions decrease by 87% compared to diesel operation.
Energy Management and Sizing of a Stand-alone Hybrid Renewable Energy System for Community Electricity, Fresh Water, and Cooking Gas Demands of a Remote Island
Nov 2023
Publication
Research into the off-grid hybrid energy system to provide reliable electricity to a remote community has extensively been done. However simultaneous meeting electric freshwater and gas demands from the off-grid hybrid energy sources are very scarce in literature. Power- to-X (PtX) is gaining attention in recent days in the energy transition scenarios to generate green hydrogen the primary product of the process as an energy carrier which is deemed to replace conventional fuels to reach absolute carbon neutrality. In this study renew able–based hybrid energy is developed to simultaneously meet the electricity freshwater and gas (cooking gas via methanation process) demands for a remote Island in Bangladesh. In this process an energy management strategy has been developed to use the excess energy to generate both freshwater and the hydrogen where hydrogen is then converted to natural gas via methanation process. The PV wind turbine diesel generator battery and fuel cell have been optimized using non-dominating sorting algorithm-II (NSGA-II) to offer reliable cost-effective solutions of electricity freshwater and cooking gas for the end users. Results reported that the PV/ WT/DG/Batt configuration has been found the most economic configuration with the lowest COE (0.1724 $/kWh) which is 9 % lower than PV/WT/Batt configuration which has the second lowest COE. The cost of water (COW) and cost of gas (COG) of the PV/WT/DG/Batt system are also the lowest among all the four configurations and have been found 1.185 $/m3 and 3.978 $/m3 respectively.
Comparative Analysis of the Alternative Energy: Case of Reducing GHG Emissions of Estonian Pilot Fleet
Feb 2025
Publication
The FuelEU Maritime Regulation part of the European Union’s (EU’s) Fit for 55 initiative aims to achieve significant reductions in greenhouse gas (GHG) emissions within the maritime sector. This study assesses the feasibility of alternative fuels for the Estonian pilot fleet using a Well-to-Wake (WtW) life cycle assessment (LCA) methodology. Operational data from 18 vessels sourced from the Estonian State Fleet’s records were analyzed including technical specifications fuel consumption patterns and operational scenarios. The study focused on marine diesel oil (MDO) biomethane hydrogen biodiesel ammonia and hydrotreated vegetable oil (HVO) each presenting distinct trade-offs. Biomethane achieved a 59% GHG emissions reduction but required a volumetric storage capacity up to 353% higher compared to MDO. Biodiesel reduced GHG emissions by 41.2% offering moderate compatibility with existing systems while requiring up to 23% larger storage volumes. HVO demonstrated a 43.6% emissions reduction with seamless integration into existing marine engines. Ammonia showed strong potential for long-term decarbonization but its adoption is hindered by low energy density and complex storage requirements. This research underscores the importance of a holistic evaluation of alternative fuels taking into account technical economic and environmental factors specific to regional and operational contexts. The findings offer a quantitative basis for policymakers and maritime stakeholders to develop effective decarbonization strategies for the Baltic Sea region.
Design and Analysis of an Integrated Renewable Hydrogen Production and Storage System for Hydrogen Refueling Station in a Sustainable Community
Aug 2025
Publication
This research designs a conceptual system where both solar and biomass energy subsystems are uniquely integrated to turn wastewater into useful outputs such as hydrogen fresh water and heat to achieve sustainable communities where renewable energy is utilized with the wastewater treated effectively. The system integrates several subsystems including a reheat Rankine cycle an organic Rankine cycle a multi-stage flash desalination system and a biohydrogen production unit employing a microbial electrolysis process. In order to study a potential application of this conceptually developed system the city of Oshawa in Ontario Canada is identified with its wastewater treatment facility which is designed to produce clean biohydrogen that is liquefied and stored for distribution to refueling stations for hydrogen-based transportation. In this regard thermodynamic analysis and assessment studies are conducted using the Engineering Equation Solver and demonstrating that the system achieves the overall energetic and exergetic efficiencies of 34.94% and 32.84% respectively. Furthermore the system produces freshwater at a rate of 5.36 kg/s and biohydrogen at 0.03 kg/s contributing to environmental sustainability and efficient resource utilization in addition to the heat recovered and used in the community as a useful output. This research highlights the potential of the system to significantly reduce greenhouse gas emissions while promoting sustainable energy and transportation developments in Oshawa and similar regions.
Research Progress of Fuel Cell Technology in Marine Applications: A Review
Apr 2025
Publication
With the increasing severity of global environmental issues and the pressure from the strict pollutant emission regulations proposed by the International Maritime Or‑ ganization (IMO) the shipping industry is seeking new types of marine power systems that can replace traditional propulsion systems. Marine fuel cells as an emerging energy technology only emit water vapor or a small amount of carbon dioxide during operation and have received widespread attention in recent years. However research on their appli‑ cation in the shipping industry is relatively limited. Therefore this paper collects relevant reports and literature on the use of fuel cells on ships over the past few decades and con‑ ducts a thorough study of typical fuel cell‑powered vessels. It summarizes and proposes current design schemes and optimization measures for marine fuel cell power systems pro‑ viding directions for further improving battery performance reducing carbon emissions and minimizing environmental pollution. Additionally this paper compares and analyzes marine fuel cells with those used in automotive aviation and locomotive applications of‑ fering insights and guidance for the development of marine fuel cells. Although hydrogen fuel cell technology has made significant progress in recent years issues still exist regard‑ ing hydrogen production storage and related safety and standardization concerns. In terms of comprehensive performance and economics it still cannot effectively compete with traditional internal combustion engines. However with the continued rapid devel‑ opment of fuel cell technology marine fuel cells are expected to become a key driver for promoting green shipping and achieving carbon neutrality goals.
Development, Application and Optimization of Hydrogen Refueling Processes for Railway Vehicles
Apr 2025
Publication
In recent years numerous hydrogen-powered rail vehicles have been developed and their deployment within public transport is steadily increasing. To avoid disadvantages compared to diesel vehicles refueling times of 15 min are stated in the industry as target independent of climate zones or vehicle configurations. As refueling time varies with these parameters this work presents the corresponding refueling times and defines optimization potentials. A simulation model was set up and parametrized with a reference vehicle and hydrogen refueling station from the FCH2RAIL project. Measurement data from this station and vehicle were analyzed and compared to simulation results for model validation. The results show that at high ambient temperature pre-cooling reduces refueling time by 71 % and type 4 tanks increase refueling time by 20 % compared to type 3. Overall optimized tank design and thermal management reduce the refueling time for rail vehicles from over 2 h to 15 min.
Hydrogen-powered Vessels in Green Maritime Decarbonization: Policy Drivers, Technological Frontiers and Challenges
May 2025
Publication
The global shipping industry is transitioning toward decarbonization with hydrogen-powered vessels emerging as a key solution to meet international emission reduction targets particularly the IMO’s goal of reducing emissions by 50% by 2050. As a zero-emission fuel hydrogen aligns with international regulations such as the IMO’s greenhouse gas reduction strategy the MARPOL Convention and regional policies like the EU’s Emissions Trading System. Despite regulatory support and advancements in hydrogen fuel cell technology challenges remain in hydrogen storage fuel cell integration and operational safety. Currently high-pressure gaseous hydrogen storage is the most viable option but its spatial and safety limitations must be addressed. Alternative storage methods including cryogenic liquid hydrogen organic liquid hydrogen carriers and metal hydride storage hold potential for application but still face technical and integration barriers. Overcoming these challenges requires continued innovation in vessel design fuel cell technology and storage systems supported by comprehensive safety standards and regulations. The successful commercialization of hydrogen-powered vessels will be instrumental in decarbonizing global shipping and achieving climate goals.
Hydrogen UK - Hydrogen to Power Report
Jan 2025
Publication
The UK has set an ambitious target of delivering clean power by 2030. Low carbon dispatchable power generation using hydrogen will play a key role in a clean power system by providing flexibility and other services for system operability and also by providing supply adequacy during extended periods of low renewable output decarbonising the role currently performed by an aging portfolio of unabated natural gas power generation. While some 100% hydrogen to power (H2P) commercial projects are already being deployed globally using multi megawatt fuel cells alongside blending hydrogen into existing gas turbines and new hydrogen ready turbines industrial scale 100% H2P projects face additional challenges of deploying new technology into a nascent system one which requires significant volumes of hydrogen storage with long lead times. To achieve the 2030 clean power system ambition and lay the foundations for a clean resilient and secure power system beyond 2030 it is critical that the new government takes resolute actions now to support H2P at scale. A clear strategic plan should be developed within the first 12 months of the new administration with clarity being given on policy business models and deployment rates for hydrogen to power (H2P) and its enabling infrastructure. This report produced by Hydrogen UK’s Power Generation Working Group explores the role that H2P will play in the decarbonised power system of the future the barriers to deployment and recommendations for overcoming them.
This paper can be found on their website.
This paper can be found on their website.
Low-Carbon Economic Dispatch of Integrated Energy Systems for Electricity, Gas, and Heat Based on Deep Reinforcement Learning
Oct 2025
Publication
Under the background of “dual-carbon” the development of energy internet is an inevitable trend for China’s low-carbon energy transition. This paper proposes a hydrogen-coupled electrothermal integrated energy system (HCEH-IES) operation mode and optimizes the source-side structure of the system from the level of carbon trading policy combined with low-carbon technology taps the carbon reduction potential and improves the renewable energy consumption rate and system decarbonization level; in addition for the operation optimization problem of this electric–gas–heat integrated energy system a flexible energy system based on electric–gas–heat is proposed. Furthermore to address the operation optimization problem of the HCEH-IES a deep reinforcement learning method based on Soft Actor–Critic (SAC) is proposed. This method can adaptively learn control strategies through interactions between the intelligent agent and the energy system enabling continuous action control of the multi-energy flow system while solving the uncertainties associated with source-load fluctuations from wind power photovoltaics and multi-energy loads. Finally historical data are used to train the intelligent body and compare the scheduling strategies obtained by SAC and DDPG algorithms. The results show that the SAC-based algorithm has better economics is close to the CPLEX day-ahead optimal scheduling method and is more suitable for solving the dynamic optimal scheduling problem of integrated energy systems in real scenarios.
Combustion Process Analysis of Secondary Jet-Guided Combustion in Hydrogen Direct-Injection Engines
Oct 2025
Publication
This study investigates the effects of secondary jet-guided combustion on the combustion and emissions of a hydrogen direct-injection engine through numerical simulations. The results show that secondary jet-guided combustion which involves injecting and igniting the hydrogen jet at the end of the compression stroke significantly shortens the delay period improves combustion stability and brings the combustion center closer to the top dead center (TDC) achieving a maximum indicative thermal efficiency (ITE) of 46.55% (λ = 2.4). However this strategy results in higher NOx emissions due to high-temperature combustion. In contrast single and double injections lead to worsened combustion and reduced thermal efficiency under lean-burn conditions but with relatively lower NOx emissions. This study demonstrates that secondary jet-guided combustion can effectively enhance hydrogen engine performance by optimizing mixture stratification and flame propagation providing theoretical support for clean and efficient combustion.
Comparative Risk Assessment of Gaseous and Liquid Hydrogen Fuel Gas Supply Systems for Hydrogen-fueled Vessels
Aug 2025
Publication
This study compares qualitative risk analyses of compressed hydrogen gas (GH2) and liquid hydrogen (LH2) fuel gas supply systems (FGSSs) for eco-friendly marine vessels. Using hazard identification (HAZID) and hazard and operability (HAZOP) methodologies the study systematically identifies and compares the unique risks and safety strategies for GH2 and LH2 FGSS. For GH2-FGSS HAZID identifies 22 hazards with one unacceptable risk related to potential explosions from high-pressure hydrogen accumulation due to ventilation failure. HAZOP identifies 27 hazards all categorized as acceptable or ALARP. Recommended safety measures include pressure protection devices real-time alarms and enhanced piping durability. For LH2-FGSS HAZID identifies 38 hazards without any unacceptable risks though cryogenic icing and overpressure remain significant concerns. HAZOP reveals 43 hazards with one unacceptable risk involving thermal contraction and piping damage from repeated operations posing fire hazards. Suggested mitigations include improved cooling and purge gas procedures along with rigorous insulation management. Primary differences in safety management focus on high explosion risk of GH2-FGSS from high-pressure storage and the piping damage risk of LH2-FGSS from icing and thermal contraction. To enhance risk management for each system future research implements an operational simulation-based quantitative risk assessment. This study provides foundational safety strategies and guidelines for future vessels supporting the adoption of eco-friendly fuels in the maritime industry.
Numerical Investigation of Marine Dual-Fuel Engine Operating with High Shares of Premixed Hydrogen Fuel Using LES
Oct 2025
Publication
Hydrogen fuel presents a promising pathway for achieving long-term decarbonization in the maritime sector. However its use in diesel engines introduces challenges due to high reactivity leading to increased NOx emissions and combustion instability. The aim of this study is to identify settings so that the investigated engine operates with 60% hydrogen energy fraction at high load through CFD modelling. The model is utilized to simulate a four-stroke 10.5 MW marine engine at 90% load incorporating 60% hydrogen injection by energy at the engine intake port. The CFD model is verified using experimental data from diesel operation of the marine engine and hydrogen operation of a light-duty engine. The engine performance was determined and detailed emissions analysis was conducted including NO NO2 HO2 and OH. The findings indicate a substantial rise in NOx emissions as opposed to diesel operation due to elevated combustion temperatures and increased residence time at elevated temperature of the mixture in-cylinder. The presence of HO2 and OH highlights critical zones of combustion which contribute to operational stability. The novelty of this study is supported by the examination of the high hydrogen energy fraction the advanced emissions analysis and the insights into the emissions–performance trade-offs in hydrogen-fueled dual-fuel marine engines. The results offer guidance for the development of sustainable hydrogen-based marine propulsion systems.
No more items...