Applications & Pathways
Bi-Level Sustainability Planning for Integrated Energy Systems Considering Hydrogen Utilization and the Bilateral Response of Supply and Demand
Aug 2025
Publication
Under the background of “double carbon” and sustainable development aimed at the problem of resource capacity planning in the integrated energy system (IES) at improving the economy of system planning operation and renewable energy (RE) consumption and at reducing carbon emissions this paper proposes a multi-objective bi-level sustainability planning method for IES considering the bilateral response of supply and demand and hydrogen utilization. Firstly the multi-energy flow in the IES is analyzed constructing the system energy flow framework studying the support ability of hydrogen utilization and the bilateral response of supply and demand to system energy conservation emission reduction and sustainable development. Secondly a multi-objective bi-level planning model for IES is constructed with the purpose of optimizing economy RE consumption and carbon emission. The non-dominated sorting genetic algorithm II (NSGA-II) and commercial solver Gurobi are used to solve the model and through the simulation verify the model’s effectiveness. Finally the planning results show that after introducing the hydrogen fuel cells hydrogen storage tank and bilateral response the total costs and carbon emissions decreased by 29.17% and 77.12% while the RE consumption rate increased by 16.75%. After introducing the multi-objective planning method considering the system economy RE consumption and carbon emissions the system total cost increased by 0.34% the consumption rate of RE increased by 0.6% and the carbon emissions decreased by 43.61t which effectively provides reference for resource planning and sustainable development of IES.
Techno-Economic Analysis of Hydrogen Transport via Truck Using Liquid Organic Hydrogen Carriers
Apr 2025
Publication
This study presents a techno-economic analysis of hydrogen transportation via liquid organic hydrogen carriers by road comparing this option with compressed hydrogen (350 bar) and liquefied hydrogen. The analysis includes the simulation of hydrogenation and dehydrogenation reactors for the dibenzyltoluene/perhydro-dibenzyltoluene system using ASPEN Plus along with a cost assessment of compression liquefaction and trucking. A sensitivity analysis is also carried out evaluating hydrogen transport at varying daily demand levels (1 2 and 4 t/d) and transport distances (50 150 and 300 km) with varying electricity prices and capital expenditures for hydrogenation and dehydrogenation units. Results indicate that compressed hydrogen is the most cost-effective solution for short distances up to 150 km with a levelized cost of transported hydrogen ranging from 1.10 to 1.61 EUR/kg. However LOHC technology becomes more competitive at longer distances with LCOTH values between 1.49 and 1.90 EUR/kg at 300 km across all demand levels. Liquefied hydrogen remains the least competitive option reaching costs up to 5.35 EUR/kg although it requires fewer annual trips due to higher trailer capacity. Notably at 150 km LOHC transport becomes more cost-effective than compressed hydrogen when electricity prices exceed 0.22 EUR/kWh or when the capital costs for hydrogenation and dehydrogenation units are minimized. From an environmental perspective switching from compressed to liquid hydrogen carriers significantly reduces CO2 emissions—by 56% for LOHCs and 78% for liquid hydrogen—highlighting the potential of these technologies to support the decarbonization of hydrogen logistics.
Mitigating Power Deficits in Lean-Burn Hydrogen Engines with Mild Hybrid Support for Urban Vehicles
Aug 2025
Publication
Hydrogen-fueled internal combustion engines present a promising pathway for reducing carbon emissions in urban transportation by allowing for the reuse of existing vehicle platforms while eliminating carbon dioxide emissions from the exhaust. However operating these engines with lean air–fuel mixtures—necessary to reduce nitrogen oxide emissions and improve thermal efficiency—leads to significant reductions in power output due to the low energy content of hydrogen per unit volume and slower flame propagation. This study investigates whether integrating a mild hybrid electric system operating at 48 volts can mitigate the performance losses associated with lean hydrogen combustion in a small passenger vehicle. A complete simulation was carried out using a validated one-dimensional engine model and a full zero-dimensional vehicle model. A Design of Experiments approach was employed to vary the electric motor size (from 1 to 15 kW) and battery capacity (0.5 to 5 kWh) while maintaining a fixed system voltage optimizing both the component sizing and control strategy. Results showed that the best lean hydrogen hybrid configuration achieved reductions of 18.6% in energy consumption in the New European Driving Cycle and 5.5% in the Worldwide Harmonized Light Vehicles Test Cycle putting its performance on par with the gasoline hybrid benchmark. On average the lean H2 hybrid consumed 41.2 kWh/100 km nearly matching the 41.0 kWh/100 km of the gasoline P0 configuration. Engine usage analysis demonstrated that the mild hybrid system kept the hydrogen engine operating predominantly within its high-efficiency region. These findings confirm that lean hydrogen combustion when supported by appropriately scaled mild hybridization is a viable near-zero-emission solution for urban mobility— delivering competitive efficiency while avoiding tailpipe CO2 and significantly reducing NOx emissions all with reduced reliance on large battery packs.
The Hydrogen Trade-Off: Optimizing Decarbonization Pathways for Urban Integrated Energy Systems
Aug 2025
Publication
Rapid socio-economic development has made energy application and environmental issues increasingly prominent. Hydrogen energy clean eco-friendly and highly synergistic with renewable energy has become a global research focus. This study using the EnergyPLAN model that includes the electricity transportation and industrial sectors takes Jinan City as the research object and explores how hydrogen penetration changes affect the decarbonization path of the urban integrated energy system under four scenarios. It evaluates the four hydrogen scenarios with the entropy weight method and technique placing them in an order of preference according to their similarity to the ideal solution considering comprehensive indicators like cost carbon emissions and sustainability. Results show the China Hydrogen Alliance potential scenario has better CO2 emission reduction potential and unit emission reduction cost reducing them by 7.98% and 29.39% respectively. In a comprehensive evaluation it ranks first with a score of 0.5961 meaning it is closest to the ideal scenario when cost environmental and sustainability indicators are comprehensively considered. The Climate Response Pioneer scenario follows with 0.4039 indicating that higher hydrogen penetration in terminal energy is not necessarily the most ideal solution. Instead appropriate hydrogen penetration scenarios should be selected based on the actual situation of different energy systems.
Energy Equivalent Consumption and Optimization Strategies for Hybrid Hydrogen Fuel Systems in Multirotor Drones
Jan 2025
Publication
This paper presents an improved Equivalent Consumption Minimization Strategy (ECMS) designed to optimize energy management for the hybrid hydrogen fuel power setups in multirotor drones. The proposed strategy aims to reduce hydrogen consumption and enhance the performance of the system consisting of Proton Exchange Membrane Fuel Cells (PEMFCs) and lithium batteries. Multirotor drones experience rapid power fluctuations due to their agile maneuvering but PEMFCs are unable to meet these demands swiftly due to their inherent limitations. To address this lithium batteries supplement peak power requirements and absorb excess energy on the DC bus. However this can lead to energy loss if the batteries are charged when not required. Our improved ECMS considers these inefficiencies and adjusts energy distribution to reduce hydrogen consumption and optimize the system’s performance. The proposed strategy effectively maintains the lithium batteries’ State of Charge (SOC) reduces hydrogen usage and enhances overall system efficiency when compared to traditional ECMS approaches.
Techno-Economic Analysis on Implementing Hydrogen in a Combined Heat and Power Plant in Luxembourg to Reduce Carbon Emissions
Apr 2025
Publication
In 2021 the global electricity and heat sector recorded the highest increase in carbon dioxide (CO2) emissions in comparison with the previous year highlighting the ongoing challenges in reducing emissions within the sector. Therefore combined heat and power (CHP) plants running on renewable fuels can play an important role in the energy transition by decarbonising a process increasing the efficiency and capacity factor. Since 2003 Luxembourgish CHP plants have been transitioning from natural gas to biomass mainly wood pellets. However even though wood pellets are a renewable alternative the market volatility in 2022 highlighted the vulnerability of a system reliant solely on one type of fuel. This study assesses the feasibility of using hydrogen to decarbonise a cogeneration plant powered by a natural gas-fuelled internal combustion engine. Although the technology to use hydrogen as a fuel for such systems already exists a technical and economic analysis of implementing a hydrogen-ready plant is still lacking. Our results show that from a technical perspective retrofitting an existing power plant to operate with hydrogen is feasible either by adapting or replacing the engine to accommodate hydrogen blends from 0 up to 100%. The costs of making the CHP plant hydrogen-ready vary depending on the scenario ranging from a 20% increase for retrofitting to a 60% increase for engine replacement in the best-case scenarios. However these values remain highly variable due to uncertainties associated with the ongoing technology development. From an economic standpoint as of 2024 running the plant on hydrogen remains more expensive due to significant initial investments and higher fuel costs. Nevertheless projections indicate that rising climate concerns CO2 taxes geopolitical factors and the development of the hydrogen framework in the region—through projects such as MosaHYc and HY4Link— could accelerate the competitiveness of hydrogen making it a more viable alternative to fossil-based solutions in the near future.
Optimization of Hydrogen Combustion in Diesel Engines: A CFD-Based Approach for Efficient Hydrogen Mixing and Emission Reduction
Apr 2025
Publication
Hydrogen internal combustion engines (ICEs) have gained significant attention as a promising solution for achieving zero-carbon emissions in the transportation sector. This study investigates the conversion of a 2 L Diesel ICE into a lean hydrogen-powered ICE focusing on key challenges such as hydrogen mixing pre-ignition combustion flame development and NOx emissions. The novelty of this research lies in the specific modifications made to optimize engine performance and reduce emissions while utilizing the existing Diesel engine infrastructure. The study identifies several important design changes for the successful conversion of a Diesel engine to hydrogen including the following: Intake port design: transitioning from a swirl to a tumble design to enhance hydrogen mixing; Injection and spark plug configuration: using a lateral injection system combined with a central spark plug to improve combustion; Piston design: employing a lenticular piston shape with adaptable depth to enhance mixing; Mitigating Coanda effect: preventing hydrogen issues at the spark plug using deflectors or caps; and Head design: maintaining a flat head design for efficient mixing while ensuring adequate cooling to avoid pre-ignition. These findings highlight the importance of specific modifications for converting Diesel engines to hydrogen providing a solid foundation for further research in hydrogen-powered ICEs which could contribute to carbon emission reduction and a more sustainable energy transition.
Research on Energy Management Strategy Based on Adaptive Equivalent Fuel Consumption Minimum for Hydrogen Hybrid Energy Systems
Mar 2025
Publication
Hydrogen has attracted widespread attention due to its zero emissions and high energy density and hydrogen-fueled power systems are gradually emerging. This paper combines the advantages of the high conversion efficiency of fuel cells and strong engine power to propose a hydrogen hybrid energy system architecture based on a mixture of fuel cells and engines in order to improve the conversion efficiency of the energy system and reduce its fuel consumption rate. Firstly according to the topology of the hydrogen hybrid energy system and the circuit model of its core components a state-space model of the hydrogen hybrid energy system is established using the Kirchhoff node current principle laying the foundation for the control and management of hydrogen hybrid energy systems. Then based on the state-space model of the hydrogen hybrid system and Pontryagin’s minimum principle a hydrogen hybrid system management strategy based on adaptive equivalent fuel consumption minimum strategy (A-ECMS) is proposed. Finally a hydrogen hybrid power system model is established using the AVL Cruise simulation platform and a control strategy is developed using matlab 2021b/Simulink to analyze the output power and fuel economy of the hybrid energy system. The results show that compared with the equivalent fuel consumption minimum strategy (ECMS) the overall fuel economy of A-ECMS could improve by 10%. Meanwhile the fuel consumption of the hydrogen hybrid energy system is less than half of that of traditional engines.
Advanced Online Fuel Cell Stack Water Management Strategies for Fuel Cell Stacks in Vehicle Powertrain Control
Sep 2025
Publication
Effective water management is crucial for the optimal performance and durability of proton exchange membrane fuel cells (PEMFCs) in automotive applications. Conventional techniques like electrochemical impedance spectroscopy (EIS) face challenges in accurately measuring high-frequency resistance (HFR) impedance during dynamic vehicle operations. This study proposes a novel stack water management stability control and vehicle energy control method to address these limitations. Simulation and experimental results demonstrate improved system and powertrain efficiency extended stack lifespan and optimized hydrogen consumption. These findings contribute to advancing robust water management strategies supporting the transition toward sustainable zero-emission fuel cell vehicles.
Lifecycle CO2 Analysis for Urban Emission Reduction of Hydrogen-fuelled and Battery Electric Buses in the European Union Current and Future Energetic Scenarios
Apr 2025
Publication
As the need to reduce Greenhouse Gas (GHG) emissions and dependence on fossil fuels grows new vehicle concepts are emerging as sustainable solutions for urban mobility. Beyond evaluating tailpipe emissions indirect emissions associated with energy and hydrogen production as vehicle manufacturing must be accounted offering a holistic Lifecycle Assessment (LCA) perspective. This study compares Battery Electric Vehicles (BEVs) Fuel Cell Vehicles (FCVs) Hydrogen Internal Combustion Engine Vehicles (H2ICEVs) and hybrid H2ICEVs analyzing energy efficiency and GHG emissions in urban environment across the European Union. Future scenarios (2030 2050) are examined as well with evolving energy mixes and manufacturing impacts. Findings show BEVs as the most efficient configuration with the lowest GHG emissions in 2024 while FCVs become the best option in future scenarios due to greener hydrogen production and improved manufacturing. This study emphasizes the need for tailored strategies to achieve sustainable urban mobility providing insights for policymakers and stakeholders.
Techno-Economic Optimal Operation of an On-Site Hydrogen Refueling Station
Oct 2025
Publication
An on-site hydrogen refueling station (HRS) directly supplies hydrogen to vehicles using an on-site hydrogen production method such as electrolysis. For the efficient operation of an on-site HRS it is essential to optimize the entire process from hydrogen production to supply. However most existing approaches focus on the efficiency of hydrogen production. This study proposes an optimal operation model for a renewable-energy-integrated on-site HRS which considers the degradation of electrolyzers and operation of compressors. The proposed model maximizes profit by considering the hydrogen revenue electricity costs and energy storage system degradation. It estimates hydrogen production using a voltage equation models compressor power using a shaft power equation and considers electrolyzer degradation using an empirical voltage model. The effectiveness of the proposed model is evaluated through simulation. Comparison with a conventional control strategy shows an increase of over 56% in the operating revenue.
A GAN‑and‑Transformer‑Assisted Scheduling Approach for Hydrogen‑Based Multi‑Energy Microgrid
Sep 2025
Publication
Against the backdrop of ever‑increasing energy demand and growing awareness of en‑ vironmental protection the research and optimization of hydrogen‑related multi‑energy systems have become a key and hot issue due to their zero‑carbon and clean characteristics. In the scheduling of such multi‑energy systems a typical problem is how to describe and deal with the uncertainties of multiple types of energy. Scenario‑based methods and ro‑ bust optimization methods are the two most widely used methods. The first one combines probability to describe uncertainties with typical scenarios and the second one essentially selects the worst scenario in the uncertainty set to characterize uncertainties. The selection of these scenarios is essentially a trade‑off between the economy and robustness of the so‑ lution. In this paper to achieve a better balance between economy and robustness while avoiding the complex min‑max structure in robust optimization we leverage artificial in‑ telligence (AI) technology to generate enough scenarios from which economic scenarios and feasible scenarios are screened out. While applying a simple single‑layer framework of scenario‑based methods it also achieves both economy and robustness. Specifically first a Transformer architecture is used to predict uncertainty realizations. Then a Gener‑ ative Adversarial Network (GAN) is employed to generate enough uncertainty scenarios satisfying the actual operation. Finally based on the forecast data the economic scenar‑ ios and feasible scenarios are sequentially screened out from the large number of gener‑ ated scenarios and a balance between economy and robustness is maintained. On this ba‑ sis a multi‑energy collaborative optimization method is proposed for a hydrogen‑based multi‑energy microgrid with consideration of the coupling relationships between energy sources. The effectiveness of this method has been fully verified through numerical exper‑ iments. Data show that on the premise of ensuring scheduling feasibility the economic cost of the proposed method is 0.67% higher than that of the method considering only eco‑ nomic scenarios. It not only has a certain degree of robustness but also possesses good economic performance.
Mitigating Urban Pollution: A Comparative Life Cycle Assessment of Hydrogen, Electric, and Diesel Buses for Urban Transportation
Mar 2025
Publication
Urban transportation systems particularly public buses contribute significantly to global pollution creating an urgent need for sustainable solutions. Alternative fuel buses and other disruptive technological advancements in this field are essential to resolve these problems. The absence of studies on the life cycle assessment (LCA) of hydrogen-fueled buses along with comparative analyses of alternative-fueled buses makes this research particularly timely. This study develops a comprehensive LCA framework to measure the economic and environmental impact of using different technologies (i.e. hydrogen-fueled electric and diesel buses). Different fuel production methods were examined considering operational factors such as energy consumption across various routes. This study contributes to enhancing the LCA methodology for public bus operations by using machine learning algorithms to cluster routes and identify optimal demonstration routes for analysis. The results highlight the impact of fuel production methods for hydrogen-fueled buses in the significant pollutant reductions (e.g. CO2 and NO ) despite their high life cycle costs. The proposed framework is validated with real data from Halifax Canada and expanded to assess public bus networks in cities with varying routes topology and population levels. The paper’s analyses consider future technological advances to lower costs aligning them with electric buses over time. This study helps policymakers choose the best public bus alternatives to improve the economic environmental and social sustainability of urban transportation.
Enhancing Renewable Energy Integration via Robust Multi-Energy Dispatch: A Wind–PV–Hydrogen Storage Case Study with Spatiotemporal Uncertainty Quantification
Aug 2025
Publication
This paper addresses the challenge of renewable energy curtailment which stems from the inherent uncertainty and volatility of wind and photovoltaic (PV) generation by developing a robust model predictive control (RMPC)-based scheduling strategy for an integrated wind–PV–hydrogen storage multi-energy flow system. By building a “wind– PV–hydrogen storage–fuel cell” collaborative system the time and space complementarity of wind and PV is used to stabilize fluctuations and the electrolyzer–hydrogen production– gas storage tank–fuel cell chain is used to absorb surplus power. A multi-time scale state-space model (SSM) including power balance equation equipment constraints and opportunity constraints is established. The RMPC scheduling framework is designed taking the wind–PV joint probability scene generated by Copula and improved K-means and SSM state variables as inputs and the improved genetic algorithm is used to solve the min–max robust optimization problem to achieve closed-loop control. Validation using real-world data from Xinjiang demonstrates a 57.83% reduction in grid power fluctuations under extreme conditions and a 58.41% decrease in renewable curtailment rates markedly enhancing the local system’s capacity to utilize wind and solar energy.
Computational Thermo-mechanical Modelling and Design-space Exploration of Cryogenic Hydrogen Tanks for Aviation
Aug 2025
Publication
A tool for parametric finite element modeling and analysis of LH2 tanks for aviation is developed. Passively insulated cryogenic composite sandwich pressure vessels are investigated as they conjugate simplicity effectiveness and lightweight design for aeronautical applications. Several parametric analyses are performed with the aim of gaining both general and case-specific understanding of how particular design choices may impact the tank mechanical and thermal performance. Differently from most of previous studies multiple design choices including tank walls thicknesses constraints for airframe integration strategies as well as the presence position and integration of refuelling cutouts and anti-sloshing bulkheads are considered. The thermo-mechanical analyses are performed considering first a simple reference configuration with the aim of evaluating possible directions for performance enhancement. Results indicate how different design features affect the gravimetric and thermal efficiency of the tank without compromising structural integrity if the walls thicknesses are suitably sized. The effects of different constraints and geometric discontinuities which reflect specific fuselage integration choices must be carefully assessed as they reduce safety margins. Ultimately a vessel model including features necessary for safe operation is presented as it serves as a baseline for further optimization.
Multi-Time-Scale Layered Energy Management Strategy for Integrated Production, Storage, and Supply Hydrogen Refueling Stations Based on Flexible Hydrogen Load Characteristics of Ports
Mar 2025
Publication
Aiming at resolving the problem of stable and efficient operation of integrated green hydrogen production storage and supply hydrogen refueling stations at different time scales this paper proposes a multi-time-scale hierarchical energy management strategy for integrated green hydrogen production storage and supply hydrogen refueling station (HFS). The proposed energy management strategy is divided into two layers. The upper layer uses the hourly time scale to optimize the operating power of HFS equipment with the goal of minimizing the typical daily operating cost and proposes a parameter adaptive particle swarm optimization (PSA-PSO) solution algorithm that introduces Gaussian disturbance and adaptively adjusts the learning factor inertia weight and disturbance step size of the algorithm. Compared with traditional optimization algorithms it can effectively improve the ability to search for the optimal solution. The lower layer uses the minute-level time scale to suppress the randomness of renewable energy power generation and hydrogen load consumption in the operation of HFS. A solution algorithm based on stochastic model predictive control (SMPC) is proposed. The Latin hypercube sampling (LHS) and simultaneous backward reduction methods are used to generate and reduce scenarios to obtain a set of high-probability random variable scenarios and bring them into the MPC to suppress the disturbance of random variables on the system operation. Finally real operation data of a HFS in southern China are used for example analysis. The results show that the proposed energy management strategy has a good control effect in different typical scenarios.
Hydrogen-Containing Fuel Influence on Compression-Ignition Engine Part Wear and Emissions of Toxic Substances
Mar 2025
Publication
Issues related to the components of modern fuel equipment wear processes have been discussed. The fuel injector is one of the key elements of the fuel equipment system because it is a device responsible for distributing and spraying hydrogen-containing fuel in the engine combustion chamber. It is mounted in the modern engine head directly in the combustion chamber. If the fuel injector is faulty it affects the operating parameters and in particular the ecological parameters of the modern engine such as the emission of toxic substances into the environment. Additionally a hydrogen reactor has been installed in the Common Rail (CR) system the task of which is to produce hydrogen. As a result of the temperature prevailing in the operating environment of the injection equipment various types of wear occur inside the system including hydrogen degradation. The types of degradation processes of precision pairs of modern fuel injectors have been analyzed and classified. Microscopic tests were performed to analyze the contamination in the fuel system and to compare the ecological parameters of the engine operating on efficient and worn fuel injectors. The emission of nitrogen oxides carbon monoxide and soot has been analyzed as a key ecological parameter. It has been established that the loss of precision of pairs of elements of a damaged fuel injector significantly affects the size of the injection doses of the fuel mixture containing hydrogen.
Research on Pricing Strategy of Shared Electro-thermal-hydrogen Energy Storage in Integrated Energy Multi-microgrid Based on Hybrid Game
May 2025
Publication
Against the backdrop of high investment costs in distributed energy storage systems this paper proposes a bi-level energy management model based on shared multi-type energy storage to enhance system economics and resource utilization efficiency. First an electricity–heat–hydrogen coupled shared storage architecture is developed incorporating hydrogen-blended gas turbines gas boilers and hydrogen loads to achieve deep coupling between the power grid and natural gas network. Then a bi-level game model is formulated with the upper-level objective of minimizing the storage operator’s cost and the lower-level objective of minimizing the cost of the integrated energy microgrid (IEM) aggregator. A cooperative game mechanism is introduced within the microgrids to support peer-to-peer energy trading. Nash bargaining theory is applied to determine benefit allocation and dynamic pricing strategies among microgrids. The model is solved using a genetic algorithm (GA) and the alternating direction method of multipliers (ADMM). Simulation results validate the proposed strategy’s effectiveness and feasibility in reducing system costs improving overall benefits and achieving fair benefit allocation.
Sustainable Fuel Supply for Very Small Island Transportation: The Potential of Hybrid Renewable Energy and Green Hydrogen
Mar 2025
Publication
The transition to a low-carbon future necessitates innovative approaches to renewable energy deployment particularly in the marine environment where abundant resources remain underutilized. This paper explores the potential of hybrid renewable energy systems and green hydrogen production to address the energy challenges faced by Very Small Islands (VSIs). These islands heavily rely on imported fossil fuels making them vulnerable to global price fluctuations and contributing to economic instability and environmental degradation. Offshore floating platforms present a transformative opportunity by harnessing marine renewable resources integrating wind solar and wave energy to maximize energy production while minimizing land use conflicts. Green hydrogen produced through the electrolysis of seawater powered by these renewable sources offers a sustainable alternative for decarbonizing transportation particularly in the maritime sector. The study aims to assess the feasibility of converting small conventional passenger vessels to hydrogen propulsion and evaluate the technical economic and environmental impacts of deploying offshore platforms for hydrogen production. By examining these aspects this research contributes to the broader discourse on sustainable energy solutions for island communities and provides actionable insights into implementing renewable hydrogen-based maritime transport.
Aviation Research & Innovation Strategy: A Pathway to Competitive and Sustainable Aviation Supporting Europe's Sovereignty
Jun 2025
Publication
Renewing a vision for European aviation: Europe today leads the world in civil aviation and air traffic management (ATM). This success should not be taken for granted particularly as the sector undergoes decarbonisation and digitalisation in today’s challenging geopolitical context. Significant value is at stake and capturing this value – for the sake of Europe’s competitiveness sustainability and sovereignty – is contingent on substantial investment in aviation research and innovation (R&I) and support to market uptake of new technologies to avoid the “valley of death” between technological development and product entry-into-service. Aviation is a major socio-economic contributor to Europe: The aviation industry is a vital component of Europe’s economy contri buting significantly to jobs gross domestic product (GDP) and trade. Overall the European aviation sector supports 15 million jobs and contributes EUR 1.1 trillion to European economic activity. The aviation sector is also critical to the EU single market European integration and global connectivity. It drives innovation and enhances Europe’s global influence and security through its combined focus on sustainability and competitiveness. The importance of aviation in achieving these fundamental goals for Europe is underscored by the findings of the Draghi report.
No more items...