Applications & Pathways
Long Short-term Memory Time Series Modelling of Pressure Valves for Hydrogen-powered Vehicles and Infrastructure
Apr 2025
Publication
Long-term reliability and accuracy of pressure valves are critical for hydrogen infrastructure and applications particularly in hydrogen-powered vehicles exposed to extreme weather conditions like cold winters and hot summers. This study evaluates such valves using the Endurance Test specified in European Commission Regulation (EU) No 406/2010 fulfilling Regulation (EC) No 79/2009 requirements for hydrogen vehicle type approval. A long short-term memory (LSTM) network accelerates valve development and validation by simulating endurance tests. The LSTM model with three inputs and one output predicts valve outlet pressure responses using experimental data collected at 25 ◦C 85 ◦C and − 40 ◦C simulating a 20-year lifecycle of 75000 cycles. At 25 ◦C the model achieves optimal performance with 40000 training cycles and an R2 of 0.969 with R2 values exceeding 0.960 across all temperatures. This efficient robust approach accelerates testing enabling realtime diagnostics and advancing hydrogen technologies for a sustainable future.
Technical–Economic Analysis for Ammonia Ocean Transportation Using an Ammonia-Fueled Carrier
Jan 2024
Publication
This study performed a technical–economic analysis for ship-based ammonia transportation to investigate the feasibility of international ammonia transportation. Ammonia is considered to be a vital hydrogen carrier so the international trade in ammonia by ship will considerably increase in the future. This study proposed three scenarios for transporting ammonia from the USA Saudi Arabia and Australia to South Korea and employed an 84000 m3 class ammonia carrier. Not only traditional very low sulfur fuel oil (VLSFO)/marine diesel oil (MDO) but also LNG and ammonia fuels were considered as propulsion and power generation fuels in the carrier. A life-cycle cost (LCC) model consisting of capital expenditure (CAPEX) and operational expenditure (OPEX) was employed for the cost estimation. The results showed that the transportation costs depend on the distance. The unit transportation cost from the USA to South Korea was approximately three times higher than that of Australia to South Korea. Ammonia fuel yielded the highest costs among the fuels investigated (VLSFO/MGO LNG and ammonia). When using ammonia fuel the unit transportation cost was approximately twice that when using VLSFO/MDO. The fuel costs occupied the largest portion of the LCC. The unit transportation costs from Australia to South Korea were 23.6 USD/ton-NH3 for the LVSFO/MDO fuel case 31.6 USD/ton-NH3 for the LNG fuel case and 42.9 USD/ton-NH3 for the ammonia fuel case. This study also conducted a sensitivity analysis to investigate the influence of assumptions including assumed parameters.
Energy Storage Systems for Photovoltaic and Wind Systems: A Review
May 2023
Publication
The study provides a study on energy storage technologies for photovoltaic and wind systems in response to the growing demand for low-carbon transportation. Energy storage systems (ESSs) have become an emerging area of renewed interest as a critical factor in renewable energy systems. The technology choice depends essentially on system requirements cost and performance characteristics. Common types of ESSs for renewable energy sources include electrochemical energy storage (batteries fuel cells for hydrogen storage and flow batteries) mechanical energy storage (including pumped hydroelectric energy storage (PHES) gravity energy storage (GES) compressed air energy storage (CAES) and flywheel energy storage) electrical energy storage (such as supercapacitor energy storage (SES) superconducting magnetic energy storage (SMES) and thermal energy storage (TES)) and hybrid or multi-storage systems that combine two or more technologies such as integrating batteries with pumped hydroelectric storage or using supercapacitors and thermal energy storage. These different categories of ESS enable the storage and release of excess energy from renewable sources to ensure a reliable and stable supply of renewable energy. The optimal storage technology for a specific application in photovoltaic and wind systems will depend on the specific requirements of the system. It is important to carefully evaluate these needs and consider factors such as power and energy requirements efficiency cost scalability and durability when selecting an ESS technology.
Proton Exchange Membrane Fuel Cells (PEMFCs): Advances and Challenges
Sep 2021
Publication
The study of the electrochemical catalyst conversion of renewable electricity and carbon oxides into chemical fuels attracts a great deal of attention by different researchers. The main role of this process is in mitigating the worldwide energy crisis through a closed technological carbon cycle where chemical fuels such as hydrogen are stored and reconverted to electricity via electrochemical reaction processes in fuel cells. The scientific community focuses its efforts on the development of high-performance polymeric membranes together with nanomaterials with high catalytic activity and stability in order to reduce the platinum group metal applied as a cathode to build stacks of proton exchange membrane fuel cells (PEMFCs) to work at low and moderate temperatures. The design of new conductive membranes and nanoparticles (NPs) whose morphology directly affects their catalytic properties is of utmost importance. Nanoparticle morphologies like cubes octahedrons icosahedrons bipyramids plates and polyhedrons among others are widely studied for catalysis applications. The recent progress around the high catalytic activity has focused on the stabilizing agents and their potential impact on nanomaterial synthesis to induce changes in the morphology of NPs.
A Novel Site Selection Approach for Co-location of Petrol-hydrogen Fuelling Stations Using a Game Theory-based Multi-criteria Decision-making Model
Feb 2025
Publication
Proliferation of co-located petrol-hydrogen fueling stations is an effective solution for widespread deployment of hydrogen as a transportation fuel. Such combined fueling stations largely rely on existing infrastructure hence represent a low-cost option for setting up hydrogen fueling facilities. However optimizing the layout of dual petrol-hydrogen fueling stations and their rational site selection is critical for ensuring the efficient use of re sources. This paper investigates the site selection of combined hydrogen and petrol fueling stations at the ter minus of China’s "West-to-East Hydrogen Pipeline" project. A weighting model based on EWM-CRITIC-Game Theory is developed and the weight coefficients derived from game theory are used to perform the compre hensive ranking of potential sites. The combined evaluation results yield an overall ranking of A9 > A4 > A8 > A26 > A20 > A21 > A11. The effectiveness of this novel method is verified by comparing the results with those obtained from Copeland Borda Average and geometric mean methods. Considering the actual distance con straints the final site ranking is A9 > A4 > A8 > A20 > A21 > A11 > A14. This location offers optimal con ditions for infrastructure integration and hydrogen fueling service coverage. The reliability analysis indicates that the proposed game theory-based method delivers strong performance across various scenarios underscoring its reliability and versatility in consistently delivering accurate results.
Research into the Kinetics of Hydrogen Desorption from the MNTZV-159 Metal Hydride Storage Tank in the Operating Conditions of a Low-Pressure Refuelling Station
Aug 2025
Publication
A form of long-term hydrogen storage with high volume efficiency is hydrogen absorption into the host lattice of a metal or an alloy. Unlike high-pressure hydrogen storage this form of storage is characterised by a low operating pressure. By employing metal hydride (MH) materials in a low-pressure refuelling station it is possible to significantly increase the safety of hydrogen storage and at the same time to facilitate the refuelling of external devices that use MH storage tanks without the necessity of using a compressor. In this article a methodology for the identification of the mathematical correlations among the hydrogen pressure in the storage tank the hydrogen concentration in the alloy and the volumetric flow rate of hydrogen is described. This methodology may be used to identify the kinetics of the process and to create simplified simulations of the hydrogen release from an absorption-based storage tank by applying a finite difference method. The mathematical correlations are based on measurements of hydrogen desorption during which hydrogen was released from the storage tank at stabilised pressure levels. The resulting mathematical description facilitates the identification of the approximate hydrogen pressure depending on its flow rate for a particular MH storage tank while respecting the complexity of its internal structure heat transfer and the hydrogen’s passage through a porous powder MH material. The identified mathematical dependence applies to the certified MNTZV-159 storage tank at pressures ranging from 7 to 29.82 bar with hydrogen concentrations ranging from 0.223 to 1.342% an input temperature of 59.5 ◦C and a cooling water flow rate of 4.36 L·min−1 . This methodology for the identification of a correlation between the flow rate pressure and hydrogen concentration applies to this particular type of storage tank and it depends not only on the alloy used and the quantity of this alloy but also on the internal structure of the heat exchanger.
Liquefied Hydrogen, Ammonia and Liquid Organic Hydrogen Carriers for Harbour-to-harbour Hydrogen Transport: A Sensitivity Study
Jul 2024
Publication
Hydrogen is commonly perceived as the key player in the transition towards a low-carbon future. Nevertheless H2 low energy density hinders its easy storage and transportation. To address this issue different alternatives (liquefied hydrogen ammonia and liquid organic hydrogen carriers) are explored as hydrogen vectors. The techno-economic assessment of H2 transport through these carriers is strongly dependent on the basis of design adopted such that it is difficult to draw general conclusions. In this respect this work is aimed at performing a sensitivity analysis on the hypotheses introduced in the layout of H2 value chains. Different scenarios are discussed depending on harbour-to-harbour distances cost of utilities and raw materials and H2 application to the industrial or mobility sector. The most cost-effective carrier is selected for each case-study: NH3 is the most advantageous for industrial sector while LH2 holds promises for mobility. Critical issues are pointed out for future large-scale applications.
Techno-economic Analysis of Green Hydrogen Supply for a Hydrogen Refueling Station in Germany
Feb 2025
Publication
Green hydrogen is a cornerstone in the global quest for a carbon-neutral future offering transformative potential for decarbonizing transportation. This study investigates its role by assessing the feasibility of a large-scale hydrogen refueling station in Germany focusing on integrating renewable energy sources. A hydrogen demand model with a 10-min time resolution to refuel 30 trucks and 20 vans (1019 kg/day) is combined with a techno-economic optimization model to evaluate a hybrid energy system utilizing wind solar and grid electricity. Scenario-based analysis reveals that Levelized Cost of Hydrogen ranges from 13.92 to 18.12 €/kg primarily influenced by electricity costs. Excess electricity sales can reduce this cost to 13.34–16.92 €/kg. On-site wind energy reduces storage and grid reliance achieving the lowest hydrogen cost. Unlike prior studies this work combines temporally resolved hydrogen demand profiles with comprehensive techno-economic modeling offering unprecedented insights into decentralized green hydrogen systems for heavy-duty transport. By bridging critical gaps in the scalability and economic feasibility of Power-to-Hydrogen systems it provides viable strategies for advancing green hydrogen infrastructure.
A Review on Machine Learning Applications in Hydrogen Energy Systems
Feb 2025
Publication
Adopting machine learning (ML) in hydrogen systems is a promising approach that enhances the efficiency reliability and sustainability of hydrogen power systems and revolutionizes the hydrogen energy sector to optimize energy usage/management and promote sustainability. This study explores hydrogen energy systems including production storage and applications while establishing a connection between machine learning solutions and the challenges these systems face. The paper provides an in-depth review of the literature examining not only ML techniques but also optimization algorithms evaluation methods explainability techniques and emerging technologies. By addressing these aspects we highlight the key factors of new technologies and their potential benefits across the three stages of the hydrogen value chain. We also present the advantages and limitations of applying ML models in this field offering recommendations for their optimal use. This comprehensive and precise work serves as the most current and complete examination of ML applications within the hydrogen value chain providing a solid foundation for future research across all stages of the hydrogen industry.
Evaluating Cost and Emission Reduction Potentials with Stochastic PPA Portfolio Optimization for Green Hydrogen Production in a Decarbonized Glassworks
Sep 2025
Publication
The decarbonization of heavy industries demands large volumes of green hydrogen. To produce green hydrogen via electrolysis the EU’s Renewable Energy Directive II imposes rules to ensure the use of renewable electricity. Hydrogen producers can use portfolios of power purchase agreements (PPAs) to buy renewable electricity. These portfolios must meet hydrogen demand cost-effectively and battery storage can help by shifting excess renewable generation. However high uncertainty around future electricity prices and demand complicates optimal portfolio design. Current literature lacks comprehensive models that evaluate such portfolio optimization under uncertainty for real-world case studies including battery storage. This work addresses the gap by introducing a stochastic mixed-integer linear programming model tailored to industrial applications. We demonstrate the model using a real-world glass manufacturing site in Germany. Our findings show that portfolio optimization alone can reduce the levelized cost of hydrogen (LCOH) by 6.24% under EU rules. Adding a battery further cuts costs achieving an LCOH of 11.8 e2024 kg−1 . Exploring different temporal matching schemes reveals that weekly matching reduces LCOH by 2 e2024kg−1 while maintaining a high share of renewable energy. The model offers a flexible tool for optimizing PPA portfolios in various industrial settings.
Numerical Modelling Assessment of the Impact of Hydrogen on the Energy and Environmental Performance of a Car Using Dual Fuel (Gasoline–Hydrogen)
Feb 2025
Publication
The utilization of “green” hydrogen in transportation areas gives rise to production- and supply infrastructure-related challenges; therefore its wider application in automotive transport would lead to higher demand with cost reduction and a faster expansion of the hydrogen refuelling network. This study presents energy and environmental performance indicators analyses of a Nissan Qashqai J10 engine during the Worldwide Harmonised Light Vehicles Test Cycle (WLTC) replacing conventional fossil gasoline with dual-fuel (D-F) gasoline and hydrogen. Numerical modelling was conducted using AVL Cruise™ (Version R2022.2) software utilizing the torque fuel consumption and environmental performance data of the HR16DE engine obtained through experimental testing across a wide range of loads and speeds on an engine test bench. The experimental investigation was carried out in two stages: using pure gasoline (G100); injecting a hydrogen additive into the intake air constituting 5% of the gasoline mass (G95H5). Following similar stages numerical modelling was conducted using the vehicle’s technical specifications to calculate engine load and speed throughout the WLTC range. Instant fuel consumption and pollutant emissions (CO CH NOx) were determined for various driving modes using experimental data maps. CO2 emissions were calculated considering fuel composition and consumption. By integrating the instant values the total and specific fuel consumption and emissions were calculated. As a result this study identified the effect of a 5% hydrogen additive in improving engine energy efficiency reducing incomplete combustion products and lowering greenhouse gas (CO2) emissions under various driving modes. Finally the results were compared with the requirements of EU standards.
Comparison of Hydro-pumped and Green Hydrogen as Energy Storage Process: A Case Study on Kefalonia Island, Greece
Sep 2025
Publication
The present research work investigates the performance of two large-scale energy storage technologies: hydro-pumped storage (HPS) and green hydrogen production within a hybrid renewable energy system (HRES) developed for Kefalonia Island Greece. Given the island’s seasonal water and electricity shortages driven by summer demand and limited infrastructure the goal is to identify which storage option better supports local autonomy. Two scenarios differing only in storage method were simulated using identical wind input and desalination setup. Performance was evaluated based on climate and demand data focusing on water and electricity needs. Both scenarios achieved 99.9 % potable water coverage. The HPS system exhibited notably higher energy efficiency (67 %) compared to hydrogen (33 %) and produced slightly more desalinated water reaching 18157791 m3 versus 17986544 m3 respectively. Electricity demand coverage reached 77.8 % with HPS and 76.0 % with hydrogen while irrigation demand was met by 80.2 % and 79.4 % respectively. Seasonal storage analysis revealed pronounced summer depletion in both cases due to high demand and low wind availability with HPS recovering faster and maintaining higher storage levels owing to lower energy losses. The comparison underscores the need for storage strategies adapted to island-specific water and energy dynamics. HPS is more efficient for short-to-medium-term needs while green hydrogen offers potential for long-duration storage and deeper decarbonization.
Fuel Cell Technology Review: Types, Economy, Applications, and Vehicle-to-grid Scheme
Feb 2025
Publication
This study conducts a thorough review of fuel cell technology including types economy applications and V2G scheme. Fuel cells have been considered for diverse applications namely electric vehicles specialty vehicles such as warehouse forklifts public transportation including buses trains and ferries. Other applications include grid-related stationary and portable applications. Among available five types of fuel cells PEMFC is presently the optimal choice for electric vehicle usage due to its low operating temperature and durability. Meanwhile high temperature fuel cells such as MCFC and SOFC currently remain the best choice for utility and grid related applications. The economy of fuel cells has been continuously improving and has been illustrated to only grow into a potential main source of sustainable energy soon. With the transportation sector as fuel cell electric ve hicles evolve V2G technology is beneficial towards energy efficiency and fuel cell economy. There is evidence for V2G using FCEV being more advantageous in comparison to conventional BEVs. The costs of the five types of fuel cell vary from US$1784 to US$4500 per kW capacity. The findings are beneficial for researchers and industry professionals who wish to gain comprehensive understanding of fuel cells for adoption and development of the emerging low-emission energy solutions.
Thermal Management of Fuel Cells in Hydrogen-Powered Unmanned Aerial Vehicles
Oct 2025
Publication
Hydrogen-powered unmanned aerial vehicles (UAVs) offer significant advantages such as environmental sustainability and extended endurance demonstrating broad application prospects. However the hydrogen fuel cells face prominent thermal management challenges during flight operations. This study established a numerical model of the fuel cell thermal management system (TMS) for a hydrogen-powered UAV. Computational fluid dynamics (CFD) simulations were subsequently performed to investigate the impact of various design parameters on cooling performance. First the cooling performance of different fan density configurations was investigated. It was found that dispersed fan placement ensures substantial airflow through the peripheral flow channels significantly enhancing temperature uniformity. Specifically the nine-fan configuration achieves an 18.5% reduction in the temperature difference compared to the four-fan layout. Additionally inlets were integrated with the fan-based cooling system. While increased external airflow lowers the minimum fuel cell temperature its impact on high-temperature zones remains limited with a temperature difference increase of more than 19% compared to configurations without inlets. Furthermore the middle inlet exhibits minimal vortex interference delivering superior thermal performance. This configuration reduces the maximum temperature and average temperature by 9.1% and 22.2% compared to the back configuration.
Economic Study of Hybrid Power System Using Boil-off Hydrogen for Liquid Hydrogen Carriers
Mar 2024
Publication
This study presents a hybrid power system comprising a fuel cell (FC) and a lithium-ion battery (LIB) for liquid hydrogen (LH2) carriers which is expected to increase globally due to the production cost gap of green hydrogen between renewable-rich and renewable-poor countries. The LH2 carrier has a key challenge in handling the inevitably considerable boil-off hydrogen (BOH). As a target ship of a 50000 m3 LH2 carrier with a boil-off rate (BOR) of 0.4% per day this study employs an optimization tool to determine the economic power dispatch between the FC and LIB aimed at minimizing the lifetime cost of the ship. The BOH is used as fuel for FC during the voyage. Moreover when the ship is under cargo loading and unloading operations at the port the considerable surplus BOH is utilized to generate electricity and then sold to the shore grid (StG). The results indicate that 45.2% of the BOH can be utilized as fuel for the FC and the StG system can effectively reduce the total lifetime cost by 32.0%. Further the paper presents the outcomes of a sensitivity analysis conducted on critical parameters. This study provides new insights into the BOH issue of LH2 carriers and helps to increase the international green hydrogen market.
A Hydrogen Supply System Utilizing PEMFC Exhaust Heat and Modular Metal Hydride Tanks for Hydrogen-powered Bicycles
Sep 2025
Publication
A compact hydrogen supply system for thermally integrating metal hydride (MH) tanks with a proton exchange membrane fuel cell (PEMFC) for a hydrogen-powered electric-assist bicycle (H-bike) is proposed. The system recovers the exhaust heat generated by the PEMFC to sustain hydrogen desorption and improve the system’s energy efficiency. The results demonstrate that the split-tank strategy decreases thermal and pressure gradients and enhances heat transfer and hydrogen release. The honeycomb tank configuration further improves hydrogen desorption by promoting uniform airflow distribution around each tank thereby improving exhaust heat utilization from the PEMFC. It employs a layer-adjustable configuration facilitating the flexible adaptation of MH cartridge quantities to meet hydrogen demand and prevailing road conditions in urban areas. Under a PEMFC power output of 215 W the system maintains a stable hydrogen flow rate for over 30 min with a heat recovery efficiency of 22.62 %. Furthermore increasing the number of MH cartridge layers significantly improves the thermal utilization of the system achieving a utilization efficiency of 39.90 % with two layers. These findings confirm the feasibility and scalability of the proposed system for H-bike highlighting its potential as a decentralized hydrogen supply solution for lightweight mobility and urban transportation applications.
From Pure H2 to H2-CO2 Mixtures: A Study of Reductant Strategies in Plasma Iron Smelting Reduction
Sep 2025
Publication
Hydrogen plasma offers an emerging route for carbon-free iron oxide reduction but typical inert gas dilution limits industrial applicability. This study explores pure hydrogen and hydrogen–carbon dioxide plasma for in-flight hematite reduction in atmospheric elongated arc discharge. Pure hydrogen yields the lowest power consumption but reduced plasma stability and limited conversion. CO2 addition enhances stability increasing gas temperature from approximately 1900 K (pure H2 ) to 2900 K at 50% CO2 driven by exothermic H2 oxidation. Particle rapidly reach gas temperature (>2000 K within 5 ms). The highest metallization degree (≈37%) achieved at 30% CO2 corresponds to an optimal reductant gas composition balancing hydrogen carbon monoxide and atomic hydrogen availability. Higher dilution (50% CO2 ) significantly decreased the reductant gas availability lowering the degree of reduction despite higher temperatures. These insights demonstrate that controlled CO2 co-feeding and regeneration optimize plasma stability temperature and reductant gas chemistry presenting a promising approach towards scalable and energy-efficient hydrogen plasma smelting reduction for sustainable metallurgy with a CO2 closed loop.
A Systematic Review of Energy Recovery and Regeneration Systems in Hydrogen-Powered Vehicles for Deployment in Developing Nations
Aug 2025
Publication
Improving the efficiency and range of hydrogen-powered electric vehicles (HPEVs) is essential for their global adoption especially in developing countries with limited resources. This study systematically evaluates regenerative braking and suspension systems in HPEVs and proposes a deployment-focused framework tailored to the needs of developing nations. A comprehensive search was performed across multiple databases to identify relevant studies. The selected studies are screened assessed for quality and analyzed based on predefined criteria. The data is synthesized and interpreted to identify patterns gaps and conclusions. The findings show that regeneration systems such as regenerative braking and regenerative suspension are the most effective energy recovery systems in most electric and hydrogen-powered vehicles. Although the regenerative braking system (RBS) offers higher energy efficiency gains that enhance cost-effectiveness despite its high initial investment the regenerative suspension system (RSS) involves increased complexity. Still it offers comparatively efficient energy recovery particularly in developing countries with patchy road infrastructure. The gaps highlighted in this review will aid researchers and vehicle manufacturers in designing optimizing developing and commercializing HPEVs for deployment in developing countries.
A Review of Hybrid-Electric Propulsion in Aviation: Modeling Methods, Energy Management Strategies, and Future Prospects
Oct 2025
Publication
Aviation is under increasing pressure to reduce carbon emissions in conventional transports and support the growth of low-altitude operations such as long-endurance eVTOLs. Hybrid-electric propulsion addresses these challenges by integrating the high specific energy of fuels or hydrogen with the controllability and efficiency of electrified powertrains. At present the field of hybrid-electric aircraft is developing rapidly. To systematically study hybrid-electric propulsion control in aviation this review focuses on practical aspects of system development including propulsion architectures system- and component-level modeling approaches and energy management strategies. Key technologies in the future are examined with emphasis on aircraft power-demand prediction multi-timescale control and thermal integrated energy management. This review aims to serve as a reference for configuration design modeling and control simulation as well as energy management strategy design of hybrid-electric propulsion systems. Building on this reference role the review presents a coherent guidance scheme from architectures through modeling to energy-management control with a practical roadmap toward flight-ready deployment.
Performance Test of a Hydrogen-powered Solid Oxide Fuel Cell System and its Simulation for Vehicle Propulsion Application
Dec 2024
Publication
Solid oxide fuel cells (SOFC) have not received enough attention as a power source in the transportation sector. However with the development of the technology its advantages over other types of fuel cells such as fuel flexibility and high energy efficiency have made SOFC an interesting option. The present study aims at simulation and experimentally validation of the performance of a hydrogen-powered SOFC in an automotive application. A 6 kW SOFC stack is tested and its model is integrated into a series hybrid electric vehicle model. A fuzzy controller is designed to regulate the charging current between the battery and the SOFC in the vehicle model. Experimental tests are also conducted in a few cases on the SOFC based on the simulation results. The performance of the real SOFC stack is then analysed under dynamic loads to see how the desired current is provided in practice. The results demonstrate a good performance of the SOFC stack under variable load conditions.
No more items...