Policy & Socio-Economics
Model Development and Implementation of Techno-Economic Assessment of Hydrogen Logistics Value Chain: A Case Study of Selected Regions in the Czech Republic
Mar 2025
Publication
With the rising demand for renewable hydrogen as an alternative sustainable fuel efficient transport strategies have become essential particularly for regional and small-scale applications. While most previous studies focus on the long-distance transport of hydrogen little attention has been given to the application in regions that are remote from major transmission infrastructure. This study evaluates the techno-economic performance of hydrogen road transport using multiple-element hydrogen gas containers and compares it with multimodal transport using rail. The comparison is performed for the southeastern region of the Czech Republic. The comprehensive techno-economic assessment incorporates detailed technical evaluations precise fuel and energy consumption calculations and realworld infrastructure planning to enhance accuracy. Results showed that multimodal transport of hydrogen can significantly reduce the cost for distances exceeding 90 km. The cost is calculated based on annual vehicle utilization assuming the remaining utilization will be allocated to other tasks throughout the year. However the cost-effectiveness of rail transportation is influenced by track capacity limits and possible delays. Additionally this study highlights the crucial role of regional logistics hubs in optimizing transport modes further reducing costs and improving efficiency
Designing a Sustainable Hydrogen Supply Chain Network in the Gulf Cooperation Council (GCC) Region: Multi-objective Optimisation Using a Kuwait Case-study
Mar 2025
Publication
Located in the Arabian Gulf Kuwait is a renewable-abundant country ideal for producing hydrogen via solar energy (green hydrogen). With a global transition away from fossil fuels underway due to their adverse environmental impacts hydrogen is gaining significant traction as a promising clean energy alternative for the transport sector. Despite this there are still various challenges associated with implementing a hydrogen supply chain particularly with regard to the conflicting objectives of minimising cost environmental impact and risk. This study determines the feasibility of implementing a green hydrogen supply chain in Kuwait based on a multiobjective design to determine which combination of production (electrolysis type) storage method and transportation method is the most optimal for Kuwait. Three objective functions were considered in this study: the hydrogen supply chain cost environmental impact and safety/risk. A mathematical formulation based on mixed integer linear programming (MILP) was used involving a multi-criteria approach where the three considered objectives must be optimised simultaneously i.e. cost global warming potential and safety/risk. The multiobjective optimisation approach via the weighted sum method was applied in this study and solved via GAMS. To account for the ranking of multi-objective criteria a hybrid AHP-TOPSIS approach was used. Results showed that medium and high demand scenarios better reflect the comparative advantages of each considered method in terms of their multi-objective trade-offs. In particular it was found that higher hydrogen demand amplifies the impact of higher efficiency and operational savings within several production storage and transportation methods and that despite higher initial capital investments these costs are at some point offset by superior operational efficiency as hydrogen production volumes increase. Conversely using highly efficient electrolysers or transportation methods at low demand was found to limit their performance.
Assessing the Affordability and Independence of Building-integrated Household Green Hydrogen Systems in Canadian Urban Households under Climate Change
Aug 2025
Publication
Climate change will impact the affordability and independence of household green hydrogen systems due to shifting climate patterns and more frequent extreme events. However quantifying these impacts remains challenging because of the complex interactions among climate building characteristics and energy systems in urban environments. This study presents an integrated modeling platform that couples regional climate projections building energy performance simulations and energy system optimization to assess long-term climate impacts across four representative Canadian cities from 2010 to 2090. The results indicate that cooling-dominated cities may face up to a 50 % increase in energy costs and an 20 % rise in grid dependency whereas heating-dominated cities may experience cost reductions of up to 20 % and a 35 % decrease in grid reliance. Although climatealigned system designs cannot fully mitigate climate-induced performance variations they influence levelized cost of energy increasing it by up to 60 % in cooling-dominated cities but improving it by over 5 % in heatingdominated ones. These findings suggest that enhancing grid connectivity may be a more effective strategy than modifying system designs in cooling-dominated regions whereas adaptive design strategies offer greater benefits in heating-dominated areas.
Efficiency Measurement and Trend Analysis of the Hydrogen Energy Industry Chain in China
Apr 2025
Publication
Hydrogen energy characterized by its abundant resources green and lowcarbon attributes and wide-ranging applications is a critical energy source for achieving carbon peaking and carbon neutrality goals. The operational efficiency of the hydrogen energy industrial chain is pivotal in determining the security of its supply chain and its contribution to China’s energy transition. This study investigates the efficiency of China’s hydrogen energy industrial chain by selecting 30 listed companies primarily engaged in hydrogen energy as the research sample. A three-stage data envelopment analysis (DEA) model is applied to assess the industry’s comprehensive technical efficiency pure technical efficiency and scale efficiency. Additionally kernel density estimation is utilized to analyze efficiency trends over time. Key factors influencing efficiency are identified and targeted recommendations are provided to enhance the performance and sustainability of the hydrogen energy industrial chain. These findings offer valuable insights to support the development and resilience of China’s hydrogen energy industry
Strategic Dynamics in Hydrogen Deployment: A Game-theoretical Review of Competition, Cooperation, and Coopetition
Sep 2025
Publication
As hydrogen products emerge as a promising energy alternative in multiple sectors low carbon hydrogen supply chains require concerted efforts among a diverse array of stakeholders. Within an evolving energy transition landscape stakeholders’ competition and cooperation play a critical role in expediting the deployment of the hydrogen economy. In this review different strategies referred to as Hydrogen Competition Cooperation and Coopetition (H2CCC) dynamics are analyzed from the lenses of game theory. The study employs hybrid literature review methodology integrating both bibliometric and structured review approaches. The study reveals that competition and cooperation represent a contrasting but interconnected dynamics that drive the energy transition. Coopetition models are less common. Furthermore it is observed that Integrated Energy Systems are mainly used in cooperative and coopetitive approaches while H2 technologies and Hydrogen Supply Chains are more explored in competitive approaches. Industrial and mobility sectors are present in H2CCC dynamics with technological players more present than institutional entities. Maps definitions gaps and perspectives are developed. These insights may be valuable for policymakers industry stakeholders modelers and researchers. There remains a need for further empirical H2CCC case studies and applications of pure coopetitive games.
How Company History and Hydrogen Type Shape Public Trust and Acceptability: A Reputation Management Perspective
Aug 2025
Publication
Hydrogen is gaining interest as a clean energy source from both governments and fossil fuel companies. For hydrogen projects to succeed securing public acceptability is crucial with trust in the implementing actors playing a central role. Drawing from reputation management and attribution theory we experimentally evaluated whether people’s perceptions of energy companies wanting to start producing hydrogen for sustainability reasons differ based on two features of hydrogen production. Specifically we examined the influence of (1) the type of hydrogen (blue versus green) and (2) the energy company’s history in energy production (fossil fuels versus renewables) on perceptions about the companies’ reputation management efforts —that is the belief that companies adopt hydrogen primarily to improve their public image— as well as on levels of trust both overall and specifically in terms of integrity and competence. We further explored whether perceived reputation management explains the effects on trust and whether these factors also shape public acceptability of hydrogen production itself. Results indicated that people perceived the company with a history of working with fossil fuels as trying to improve its reputation more than one associated with renewables and trusted it less. Furthermore perceived reputation management explained the lower (general and integrity-based) trust people had in companies with a past in fossil fuels. For public acceptability of hydrogen the company’s history was not relevant with green hydrogen being more acceptable than blue regardless of which company produced it. We discuss these findings in relation to the literature on public perceptions of hydrogen.
Recent Advances in Hydrogen Production, Storage and Fuel Cell Technologies with an Emphasis on Inventions, Innovations and Commercialization
Nov 2023
Publication
The future is bright for hydrogen as a clean mobile energy source to replace petroleum products. This paper examines new and emerging technologies for hydrogen production storage and conversion and highlights recent commercialization efforts to realize its potential. Also the paper presents selected notable patents issued within the last few years. There is no shortage of inventions and innovations in hydrogen technologies in both academia and industry. While metal hydrides and functionalized carbon-based materials have improved tremendously as hydrogen storage materials over the years storing gaseous hydrogen in underground salt caverns has also become feasible in many commercial projects. Production of “blue hydrogen” is rising as a method of producing hydrogen in large quantities economically. Although electric/battery powered vehicles are dominating the green transport today innovative hydrogen fuel cell technologies are knocking at the door because of their lower refueling time compared to EV charging time. However the highest impact of hydrogen technologies in trans portation might be seen in the aviation industry. Hydrogen is expected to play a key role and provides hope in transforming aviation into a zero-carbon emission transportation over the next few decades.
Levelized Cost of Hydrogen from Offtakers Standpoint: An Overlooked Perspective Via Case Studies in Warrnambool, Australia
Aug 2025
Publication
Green hydrogen is a promising energy vector for replacing fossil fuels in hard-to-abate sectors but its cost hinders widespread deployment. This research develops an exact MILP model to optimize the design of integrated green energy projects minimizing the total annual cost between different power configurations. The model is applied to a case study in regional Victoria Australia which supports a fleet of nine fuel cell electric buses requiring 1160 kg of hydrogen per week. The optimal system includes a 453 kW electrolyzer 212 kg of storage in compressed hydrogen vessels 704 kW of solar PV and 635 kW of wind power firmed with grid electricity. The LCOH is 14.8 A$/kg which is higher than other estimates in the literature for Australia. This is arguably due to the idle capacities resulting from intermittent hydrogen demand. Producing additional hydrogen with surplus or low-priced electricity could reduce LCOH to 12.4 A$/kg. Sensitivity analyzes confirm the robustness of the system to variations in key parameter costs resource availability and estimated energy supply and demand.
From Policy to Practice: Upper Bound Cost Estimates of Europe's Green Hydrogen Ambitions
Jul 2025
Publication
As the European countries strive to meet their ambitious climate goals renewable hydrogen has emerged to aid in decarbonizing energy-intensive sectors and support the overall energy transition. To ensure that hydrogen production aligns with these goals the European Commission has introduced criteria for additionality temporal correlation and geographical correlation. These criteria are designed to ensure that hydrogen production from renewable sources supports the growth of renewable energy. This study assesses the impact of these criteria on green hydrogen production focusing on production costs and technology impacts. The European energy market is simulated up to 2048 using stochastic programming applying these requirements exclusively to green hydrogen production without the phased-in compliance period outlined in the EU regulations. The findings show that meeting the criteria will increase expected system costs by €82 billion from 2024 to 2048 largely due to the rapid shift from fossil fuels to renewable energy. The additionality requirement which mandates the use of new renewable energy installations for electrolysis proves to be the most expensive but also the most effective in accelerating renewable energy adoption.
The Growing Demand for Hydrogen: Current Trends, Sectoral Analysis, and Future Projections
Mar 2025
Publication
Hydrogen has emerged as a pivotal energy carrier in the global transition toward sustainable energy systems. This study analyses current trends sectoral dynamics and future demand projections for hydrogen employing a multi-methodological framework that integrates Compound Annual Growth Rate (CAGR) extrapolation scenario-based modeling and regional comparative analysis. By leveraging historical growth patterns of geothermal bioenergy and wind energy sectors in the European Union (EU) three hydrogen demand scenarios—Conservative (3.25 % CAGR) Moderate (8.33 % CAGR) and Optimistic (15.42 % CAGR)—are projected to 2050. Results indicate that global hydrogen demand could range from 18.8 to 381.3 million tonnes per year by 2050 depending on technological advancements policy frameworks and infrastructure investments. The transportation and industrial sectors are identified as critical drivers while regional disparities highlight leadership from the EU the U.S. and Asia-Pacific nations. The study underscores the necessity of coordinated policy cost reduction in green hydrogen production and infrastructure scalability to realize hydrogen’s potential in decarbonizing energy systems.
Hotspots in Hydrogen Research and Developments: Current Status, Pathways, Challenges, and Vision to 2050
Jul 2025
Publication
The climate crisis and global warming have created an urgent need for the scalable adoption of affordable and clean energy sources to achieve net-zero carbon emissions by 2050. Decarbonization of global industries is critical to achieving the targets of the Paris Agreement and the United Nations Sustainable Development Goals (especially Goals 7 and 13). Green hydrogen is becoming a key solution in the transition to renewable energy and the decarbonization with low-carbon energy options. This review presents an overview of the status and trends of hydrogen production storage transportation and application as well as key research areas with a forward-looking perspective to 2050. It explores the key challenges such as limited infrastructure high production costs and heavy energy demands. The study also identifies the drivers and barriers influencing hydrogen adoption across utility-scale electricity generation heating and niche markets. Key actions of governments in these pillar areas are necessary to accelerate hydrogen deployment through strategic investments and a policy framework to reduce technological costs and drive innovation. Transformative innovation in power generation transportation industrial processes and infrastructure will be essential to achieving deep decarbonization. In addition progress in digitalization automation data-driven decision-making recycling incentives and circular economies are essential to a social transformation and a global transition toward sustainability. Emerging hydrogen markets are also playing an increasingly dominant role in economic and human development particularly in low- and middle-income countries as the world works to transition to the use of renewable hydrogen.
Vision for Indonesia’s 2050 Power Generation: Scenarios of Hydrogen Integration, Nuclear Energy Prospects, and Coal Phase-Out Impact
Jan 2025
Publication
Indonesia’s energy sector faces critical challenges due to its heavy reliance on coal as the dominant power source which contributes to environmental degradation and rising CO2 emissions resulting into transition needs for renewable energy as targeted inside Nationally Determined Contribution (NDCs) 2060. In addition to these hydrogen energy also shows great potential for Indonesia’s energy needs. However to date there are no extensive research in Indonesia that simulate the effect of hydrogen incorporation and coal phase-out policy for 2050 power generation system making this research a critical contribution to the exploration of Indonesia's energy landscape. This study utilizes the Low Emissions Analysis Platform (LEAP). There are four simulated power generation scenarios in this study: the business-as-usual (BAU) scenario the hydrogen incorporation (HYD) scenario the coal phase-out (CPO) scenario and the progressive (PRO) scenario. The analysis indicates that the BAU scenario emerges as the most cost-effective approach for meeting Indonesia’s future electricity demand. However due to its inability to fulfill NDCs the CPO scenario is shown to be more viable from practical and cost perspectives requiring 406.9 GW capacity and USD 114.6 billion investment. On the contrary The HYD scenario largely aligns Indonesia’s hydrogen target potentially contributing 1-5% of energy demand and reducing coal reliance. Additionally while the PRO scenario has the highest investment cost (USD 151.4 billion) it also provides the lowest plant capacities (367.1 GW) offering the highest outputto-capacity ratio. The result suggests the necessity to enact government collaboration and construct feasibility analysis to implement renewable energy development.
Advancement in Hydrogen Production, Application and Strategy Towards Sustainable Energy: Malaysian Case Study
Aug 2025
Publication
Biohydrogen is known for its clean fuel properties with zero emissions. It serves as a reliable alternative to fossil fuel. This paper analyses the status of bio-hydrogen production in Malaysia and the on-going efforts on its advancement. Critical discussions were put forward on biohydrogen production from thermochemical and biological technologies governing associated technological issues and development. Moreover a comprehensive and vital overview has been made on Malaysian and global polices with road maps for the development of biohydrogen and its application in different sectors. This review article provides a framework for researchers on bio-hydrogen production technologies investors and the government to align policies for the biohydrogen based economy. Current biohydrogen energy outlook for production installation units and storage capacity are the key points to be highlighted from global and Malaysia’s perspectives. This critical and comprehensive review provides a strategic route for the researcher to research towards sustainable technology. Current policies related to hydrogen as fuel infrastructure in Malaysia and commercialization are highlighted. Malaysia is also gearing towards clean and decarbonization planning.
The Green Hydrogen Ambition and Implementation Gap
Jan 2025
Publication
Green hydrogen is critical for decarbonizing hard-to-electrify sectors but it faces high costs and investment risks. Here we defne and quantify the green hydrogen ambition and implementation gap showing that meeting hydrogen expectations will remain challenging despite surging announcements of projects and subsidies. Tracking 190 projects over 3 years we identify a wide 2023 implementation gap with only 7% of global capacity announcements fnished on schedule. In contrast the 2030 ambition gap towards 1.5 °C scenarios has been gradually closing as the announced project pipeline has nearly tripled to 422 GW within 3 years. However we estimate that without carbon pricing realizing all these projects would require global subsidies of US$1.3 trillion (US$0.8–2.6 trillion range) far exceeding announced subsidies. Given past and future implementation gaps policymakers must prepare for prolonged green hydrogen scarcity. Policy support needs to secure hydrogen investments but should focus on applications where hydrogen is indispensable.
Hydrogen Production from Supercritical Water Gasification of Model Compounds of Crude Glycerol from Biodiesel Industries
Apr 2023
Publication
Biodiesel production through transesterification results in a large quantity of crude glycerol as a byproduct the utilization of which is technically and economically challenging. Because of the ability to efficiently process wet feedstocks supercritical water gasification (SCWG) is utilized in this study to convert crude glycerol into hydrogen-rich syngas. A significant challenge addressed through this study is the decomposition routes of different heterogeneous components of crude glycerol during SCWG. Pure glycerol methanol and oleic acid were investigated for SCWG as the model compounds of crude glycerol. SCWG of model compounds at temperature pressure feedstock concentration and reaction time of 500 ◦C 23–25 MPa 10 wt% and 1 h respectively revealed methanol to exhibit the highest H2 yield of 7.7 mmol/g followed by pure glycerol (4.4 mmol/g) and oleic acid (1.1 mmol/g). The effects of feedstock concentration from 30 wt% to 10 wt% increased H2 yield from all model compounds. Response surface methodology (RSM) was used to develop a response curve to visualize the interactive behavior and develop model equations for the prediction of H2 -rich gas yields as a function of the composition of model compounds in the crude glycerol mixture. Predictive models showed a good agreement with experimental results demonstrating high accuracy and robustness of the model. These findings demonstrated a strong potential of crude glycerol for SCWG to generate H2 -rich syngas.
The Many Greenhouse Gas Footprints of Green Hydrogen
Aug 2022
Publication
Green hydrogen could contribute to climate change mitigation but its greenhouse gas footprint varies with electricity source and allocation choices. Using life-cycle assessment we conclude that if electricity comes from additional renewable capacity green hydrogen outperforms fossil-based hydrogen. In the short run alternative uses of renewable electricity likely achieve greater emission reductions.
Anion-exchange Membrane Water Electrolyzers
Apr 2022
Publication
This Review provides an overview of the emerging concepts of catalystsmembranes and membrane electrode assemblies (MEAs) for water electrolyzers with anion-exchange membranes (AEMs) also known as zero-gap alkaline water electrolyzers. Much ofthe recent progress is due to improvements in materials chemistry MEA designs andoptimized operation conditions. Research on anion-exchange polymers (AEPs) has focusedon the cationic head/backbone/side-chain structures and key properties such as ionicconductivity and alkaline stability. Several approaches such as cross-linking microphase andorganic/inorganic composites have been proposed to improve the anion-exchangeperformance and the chemical and mechanical stability of AEMs. Numerous AEMs nowexceed values of 0.1 S/cm (at 60−80 °C) although the stability specifically at temperaturesexceeding 60 °C needs further enhancement. The oxygen evolution reaction (OER) is still alimiting factor. An analysis of thin-layer OER data suggests that NiFe-type catalysts have thehighest activity. There is debate on the active-site mechanism of the NiFe catalysts and their long-term stability needs to beunderstood. Addition of Co to NiFe increases the conductivity of these catalysts. The same analysis for the hydrogen evolutionreaction (HER) shows carbon-supported Pt to be dominating although PtNi alloys and clusters of Ni(OH) 2 on Pt show competitiveactivities. Recent advances in forming and embedding well-dispersed Ru nanoparticles on functionalized high-surface-area carbonsupports show promising HER activities. However the stability of these catalysts under actual AEMWE operating conditions needsto be proven. The field is advancing rapidly but could benefit through the adaptation of new in situ techniques standardizedevaluation protocols for AEMWE conditions and innovative catalyst-structure designs. Nevertheless single AEM water electrolyzercells have been operated for several thousand hours at temperatures and current densities as high as 60 °C and 1 A/cm 2 respectively.
Energy Transition Outlook - UK 2025
Feb 2025
Publication
In the wake of unprecedented global weather events and the ever-pressing urgency of climate change the discourse around energy transition has become more critical than ever.<br/>The United Kingdom once at the forefront of the energy transition movement finds itself at a crossroads. The initial rapid progress towards a low-carbon future is now facing hurdles threatening the achievement of the 'net zero by 2050' target.<br/>This revelation comes from the third edition of our UK Energy Transition Outlook (ETO) which leverages an independent model incorporating the UK's energy system's extensive connections with Europe and beyond.<br/>This report has a comprehensive analysis of:<br/>♦ Renewable energy technology scaling and costs<br/>♦ The continuing dependence on fossil fuel and need to decarbonize<br/>♦ Energy demand by sector and source<br/>♦ Energy efficiency<br/>♦ Energy supply<br/>♦ Electricity and infrastructure<br/>♦ Hydrogen<br/>♦ Energy expenditure<br/>♦ Policies driving the transition<br/>♦ Digitalization.
Strategic Hydrogen Management: Driving a Sustainable Energy Future
Mar 2025
Publication
The concept of sustainability and green energy has become increasingly relevant in our lives especially in the face of climate change and the growing demand for sustainable solutions in the energy sector. Driven by renewable energies there is a continuous effort to research and develop alternative energy sources and fuels. In this context the European Union (EU) Strategy for Hydrogen (H) has emerged placing this source as one of the central pillars in the fight against climate change. Hydrogen is seen as a potential fuel and energy source of the future. However in addition to political and structural challenges this new approach also faces significant technical obstacles. With the increase in population and human needs the need for energy continues to grow. The world population is projected to reach ten billion people by the year 2050 (Tarhan and Çil 2021). To meet this growing demand and promote a transition to clean energies many countries are incorporating renewable energy sources into their energy mix while still relying on fossil fuels. Developed countries are gradually reducing their use of fossil fuels in energy production. Considering that 80 per cent of our daily energy needs are still met by these sources the complete transition is complex and not immediate but it is an achievable goal.
Hydrogen Economy and Climate Change: Additive Manufacturing in Perspective
Oct 2025
Publication
The hydrogen economy stands at the forefront of the global energy transition and additive manufacturing (AM) is increasingly recognized as a critical enabler of this transformation. AM offers unique capabilities for improving the performance and durability of hydrogen energy components through rapid prototyping topology optimization functional integration of cooling channels and the fabrication of intricate hierarchical structured pores with precisely controlled connectivity. These features facilitate efficient heat and mass transfer thereby improving hydrogen production storage and utilization efficiency. Furthermore AM’s multi-material and functionally graded printing capability holds promise for producing components with tailored properties to mitigate hydrogen embrittlement significantly extending operational lifespan. Collectively these advances suggest that AM could lower manufacturing costs for hydrogen-related systems while improving performance and reliability. However the current literature provides limited evidence on the integrated techno-economic advantages of AM in hydrogen applications posing a significant barrier to large-scale industrial adoption. At present the technological readiness level (TRL) of AM-based hydrogen components is estimated to be 4–5 reflecting laboratory-scale progress but underscoring the need for further development validation and industrial-scale demonstration before commercialization can be realized.
No more items...