Policy & Socio-Economics
Betting vs. Trading: Learning a Linear Decision Policy for Selling Wind Power and Hydrogen
Jul 2025
Publication
We develop a bidding strategy for a hybrid power plant combining co-located wind turbines and an electrolyzer constructing a price-quantity bidding curve for the day-ahead electricity market while optimally scheduling hydrogen production. Without risk management single imbalance pricing leads to an all-or-nothing trading strategy which we term “betting”. To address this we propose a data-driven pragmatic approach that leverages contextual information to train linear decision policies for both power bidding and hydrogen scheduling. By introducing explicit risk constraints to limit imbalances we move from the all-or-nothing approach to a “trading” strategy where the plant diversifies its power trading decisions. We evaluate the model under three scenarios: when the plant is either conditionally allowed always allowed or not allowed to buy power from the grid which impacts the green certification of the hydrogen produced. Comparing our data-driven strategy with an oracle model that has perfect foresight we show that the risk-constrained data-driven approach delivers satisfactory performance.
The German Scramble for Green Hydrogen in Namibia: Colonial Legacies Revisited?
Feb 2025
Publication
Namibia is positioning itself as a green hydrogen superpower to supply the German market with the muchneeded energy carrier. While the hydrogen hype is marketed as a pathway facilitating the German and Euro pean green transition that is mutually beneficial for African interests social movements and affected commu nities have been denouncing green colonialist tendencies of the hydrogen rush. This paper is centring these claims. Applying a heuristic of green colonialism along the lines of externalisation enactment expansion exclusion and empowerment we highlight colonial tendencies of the hydrogen rush in Namibia. While still in a nascent stadium current developments indicate patterns to transform Southern economies according to Euro pean interest which can then uphold their allegedly superior image as renewable energy pioneers. Our study indicates that the green hydrogen rush resembles a longue dur´ee of (neo)colonial violence: while clinging to old colonial patterns it takes advantage of the post-colonial state and at the same time uses narratives of contemporary multiple crises to advance and legitimise a supposedly green but intrinsically violent transition.
Everything About Hydrogen Podcast: COP28 Special
Dec 2023
Publication
To round off Season 5 the team are taking the podcast to COP28 in Dubai and providing listeners with a bit of texture including what the event was like to attend as well as sharing a snapshot of some of the varied voices and discussions that took place. Having had a little time for reflection Alicia Chris and Patrick also offer their thoughts and takeaways on what this COP might mean for the future.
COP28 was the first in nearly 30 years to feature hydrogen as part of the Presidential Action Agenda.
The podcast can be found on their website.
COP28 was the first in nearly 30 years to feature hydrogen as part of the Presidential Action Agenda.
The podcast can be found on their website.
Unlocking Solar and Hydrogen Potentials: A Comparative Analysis of Solar Tracking Systems for South Africa's Energy Transition
Aug 2025
Publication
This study explores the potential of solar tracking technologies to enhance South Africa’s energy transition focusing on their role in supporting green hydrogen production for domestic use and export. Using the Global Energy System Model (GENeSYS-MOD) it evaluates four solar tracking technologies — horizontal axis tilted horizontal axis vertical axis and dual-axis — across six scenarios: tracking and non-tracking versions of a Business-as-Usual (BAU) scenario a 2 ◦C scenario and a high hydrogen demand and export (HighH2) scenario. The results identify horizontal axis tracking as the most cost-effective option followed by tilted horizontal axis tracking which is particularly prominent in the HighH2 scenario. Tracking systems enhance hydrogen production by extending power output and increasing electrolyzer full-load hours. In the HighH2 scenario they reduce hydrogen production costs in 2050 from 1.47 e/kg to 1.34 e/kg and system cost by 0.66% positioning South Africa competitively in the global hydrogen market. By integrating tracking technologies South Africa can align hydrogen production ambitions with renewable energy growth while mitigating grid and financial challenges. The research underscores the need for targeted energy investments and policies to maximize renewable energy and hydrogen potential ensuring a just energy transition that supports export opportunities domestic energy security and equitable socio-economic growth.
Trends, Challenges, and Viability in Green Hydrogen Initiatives
Aug 2025
Publication
This review explores the current status of green hydrogen integration into energy and industrial ecosystems. By considering notable examples of existing and developing green hydrogen initiatives combined with insights from the relevant scientific literature this paper illustrates the practical implementation of those systems according to their main end use: power and heat generation mobility industry or their combination. Main patterns are highlighted in terms of sectoral applications geographical distribution development scales storage solutions electrolyzer technology grid interaction and financial viability. Open challenges are also addressed including the high production costs an underdeveloped transport and distribution infrastructure the geopolitical aspects and the weak business models with the industrial sector appearing as the most favorable environment where such challenges may first be overcome in the medium term.
Direct-Coupled Improvement of a Solar-Powered Proton Exchange Membrane Electrolyzer by a Reconfigurable Source
Sep 2024
Publication
This paper deals with proton exchange membrane (PEM) electrolyzers directly coupled with a photovoltaic source. It proposes a method to increase the energy delivered to the electrolyzer by reconfiguring the electrical connection of the arrays according to solar radiation. Unlike the design criterion proposed by the literature the suggested approach considers a source obtained by connecting arrays in parallel depending on solar radiation based on a fixed photovoltaic configuration. This method allows for the optimization of the operating point at medium or low solar radiation where the fixed configuration gives poor results. The analysis is performed on a low-power plant (400 W). It is based on a commercial photovoltaic cell whose equivalent model is retrieved from data provided by the manufacturer. An equivalent model of the PEM electrolyzer is also derived. Two comparisons are proposed: the former considers a photovoltaic source designed according to the traditional approach i.e. a fixed configuration; in the latter a DC/DC converter as interface is adopted. The role of the converter is discussed to highlight the pros and cons. The optimal set point of the converter is calculated using an analytical equation that takes into account the electrolyzer model. In the proposed study an increase of 17% 62% and 93% of the delivered energy has been obtained in three characteristic days summer spring/autumn and winter respectively compared to the fixed PV configuration. These results are also better than those achieved using the converter. Results show that the proposed direct coupling technique applied to PEM electrolyzers in low-power plants is a good trade-off between a fixed photovoltaic source configuration and the use of a DC/DC converter.
Is Green Hydrogen a Strategic Opportunity for Albania? A Techno-Economic, Environmental, and SWOT Analysis
Oct 2025
Publication
Hydrogen is increasingly recognized as a clean energy vector and storage medium yet its viability and strategic role in the Western Balkans remain underexplored. This study provides the first comprehensive techno-economic environmental and strategic evaluation of hydrogen production pathways in Albania. Results show clear trade-offs across options. The levelized cost of hydrogen (LCOH) is estimated at 8.76 €/kg H2 for grid-connected 7.75 €/kg H2 for solar and 7.66 €/kg H2 for wind electrolysis—values above EU averages and reliant on lower electricity costs and efficiency gains. In contrast fossil-based hydrogen via steam methane reforming (SMR) is cheaper at 3.45 €/kg H2 rising to 4.74 €/kg H2 with carbon capture and storage (CCS). Environmentally Life Cycle Assessment (LCA) results show much lower Global Warming Potential.
Future of Hydrogen in the U.S. Energy Sector: MARKAL Modeling Results
Mar 2024
Publication
Hydrogen is an attractive energy carrier which could play a role in decarbonizing process heat power or transport applications. Though the U.S. already produces about 10 million metric tons of H2 (over 1 quadrillion BTUs or 1% of the U.S. primary energy consumption) production technologies primarily use fossil fuels that release CO2 and the deployment of other cleaner H2 production technologies is still in the very early stages in the U.S. This study explores (1) the level of current U.S. hydrogen production and demand (2) the importance of hydrogen to accelerate a net-zero CO2 future and (3) the challenges that must be overcome to make hydrogen an important part of the U.S. energy system. The study discusses four scenarios and hydrogen production has been shown to increase in the future but this growth is not enough to establish a hydrogen economy. In this study the characteristics of hydrogen technologies and their deployments in the long-term future are investigated using energy system model MARKAL. The effects of strong carbon constraints do not cause higher hydrogen demand but show a decrease in comparison to the business-as-usual scenario. Further according to our modeling results hydrogen grows only as a fuel for hard-to-decarbonize heavy-duty vehicles and is less competitive than other decarbonization solutions in the U.S. Without improvements in reducing the cost of electrolysis and increasing the performance of near-zero carbon technologies for hydrogen production hydrogen will remain a niche player in the U.S. energy system in the long-term future. This article provides the reader with a comprehensive understanding of the role of hydrogen in the U.S. energy system thereby explaining the long-term future projections.
Multiplier Effect on Reducing Carbon Emissions of Joint Demand and Supply Side Measures in the Hydrogen Market
Jun 2024
Publication
Hydrogen energy is critical in replacing fossil fuels and achieving net zero carbon emissions by 2050. Three measures can be implemented to promote hydrogen energy: reduce the cost of low-carbon hydrogen through technological improvements increase the production capacity of low-carbon hydrogen by stimulating investment and enhance hydrogen use as an energy carrier and in industrial processes by demand-side policies. This article examines how effective these measures are if successfully implemented in boosting the hydrogen market and reducing global economy-wide carbon emissions using a global computable general equilibrium model. The results show that all the measures increase the production and use of low-carbon hydrogen whether implemented alone or jointly. Notably the emissions reduced by joint implementation of all the measures in 2050 become 2.5 times the sum of emissions reduced by individual implementation indicating a considerable multiplier effect. This suggests supply and demand side policies be implemented jointly to maximize their impact on reducing emissions.
Development of Effective Hydrogen Production and Process Electrification Systems to Reduce the Environmental Impacts of the Methanol Production Process
Jun 2025
Publication
The methanol industry responsible for around 10% of GHG emissions in the chemical sector faces growing challenges due to its environmental impacts. This article aims to reduce the lifecycle environmental impacts of the CO2-to-methanol process by exploring advanced electrification methods for hydrogen production and CO2 conversion. The process analysis and comprehensive life cycle assessment (LCA) are conducted on four different methanol production pathways: conventional natural gas CO2 hydrogenation trireforming of methane (TRM) and the novel electrified combined reforming (ECRM) by including two hydrogen production routes: PEM electrolysis and the innovative plasma-assisted methane pyrolysis. The LCA was performed using the ReCiPe method covering midpoint and endpoint categories across four Canadian provinces—British Columbia Alberta Ontario and Quebec. The efficient plasma technology improves environmental performance for all pathways. The plasma-assisted CO2 hydrogenation pathway in British Columbia and Quebec shows the lowest GHG emissions achieving -2.01 and -1.72 kg CO2/kg MeOH respectively. In Alberta the conventional pathway has the lowest impact followed by plasmaassisted TRM. The CO2 hydrogenation with the PEM pathway shows the highest GHG emissions at 8.00 kg CO2/kg MeOH highlighting the challenges of using hydrogen from PEM electrolysis in regions with carbon-intensive electricity grids. However the inclusion of carbon black as a byproduct further reduces the environmental impact making these plasma-assisted pathways more viable. This LCA study underscores the influence of regional factors and technology choices on the sustainability of methanol production with an example of a 107% reduction in GHG emissions when plasma-assisted ECRM is shifting from Alberta to Quebec.
Evaluating the Economic Viability of Decentralised Solar PV-based Green Hydrogen for Cooking in Ghana
Jul 2024
Publication
Developing countries including Ghana face challenges ensuring access to clean and reliable cooking fuels and technologies. Traditional biomass sources mainly used in most developing countries for cooking contribute to deforestation and indoor air pollution necessitating a shift towards environmentally friendly alternatives. The study’s primary objective is to evaluate the economic viability of using solar PV-based green hydrogen as a sustainable fuel for cooking in Ghana. The study adopted well-established equations to investigate the economic performance of the proposed system. The findings revealed that the levelized cost of hydrogen using the discounted cash flow approach is about 89% 155% and 190% more than electricity liquefied petroleum gas (LPG) and charcoal. This implies that using the hydrogen produced for cooking fuel is not cost-competitive compared to LPG charcoal and electricity. However with sufficient capital subsidies to lower the upfront costs the analysis suggests solar PV-based hydrogen could become an attractive alternative cooking fuel. In addition switching from firewood to solar PVbased hydrogen for cooking yields the highest carbon dioxide (CO2) emissions savings across the cities analysed. Likewise replacing charcoal with hydrogen also offers substantial CO2 emissions savings though lower than switching from firewood. Correspondingly switching from LPG to hydrogen produces lower CO2 emissions savings than firewood and charcoal. The study findings could contribute to the growing body of knowledge on sustainable energy solutions offering practical insights for policymakers researchers and industry stakeholders seeking to promote clean cooking adoption in developing economies.
A Prospective Approach to the Optimal Deployment of a Hydrogen Supply Chain for Sustainable Mobility in Island Territories: Application to Corsica
Oct 2024
Publication
This study develops a framework for designing hydrogen supply chains (HSC) in island territories using Mixed Integer Linear Programming (MILP) with a multi-period approach. The framework minimizes system costs greenhouse gas emissions and a risk-based index. Corsica is used as a case study with a Geographic Information System (GIS) identifying hydrogen demand regions and potential sites for production storage and distribution. The results provide an optimal HSC configuration for 2050 specifying the size location and technology while accounting for techno-economic factors. This work integrates the unique geographical characteristics of islands using a GIS-based approach incorporates technology readiness levels and utilizes renewable electricity from neighboring regions. The model proposes decentralized configurations that avoid hydrogen transport between grids achieving a levelized cost of hydrogen (LCOH) of €8.54/kg. This approach offers insight into future options and incentive mechanisms to support the development of hydrogen economies in isolated territories.
The Technopolitics of Hydrogen: Arab Gulf States' Pursuit of Significance in a Climate-Constrained World
Nov 2024
Publication
Despite uncertainties surrounding the hydrogen economy’s emergence in terms of technological innovation production storage and transport policy and regulation economic viability and environmental impact coun tries worldwide actively pursue initiatives to engage in this critical energy transition. Politicians analysts and global experts see ‘clean’ hydrogen as the ultimate solution for addressing the climate crisis. This optimism is shared by several major oil and gas-exporting nations which are investing heavily in hydrogen infrastructure to establish themselves as future global hubs. Oman Saudi Arabia and the United Arab Emirates (UAE) are especially well-positioned benefiting from strategic advantages over other hydrogen-producing regions in the Global South. Advocates in these countries view hydrogen as a potential ‘silver bullet’ for sustaining political and economic influence in a world increasingly shaped by climate constraints. Western technology and expertise play a significant role in supporting these efforts. By using various qualitative methods this paper employs and expand the concept of technopolitics to evaluate the role of industrialized nations in endorsing the Gulf states’ authoritarian top-down techno-optimistic approach to their sustainability agenda.
How Would Structural Change in Electricity and Hydrogen End Use Impact Low-Carbon Transition of an Energy System? A Case Study of China
Feb 2024
Publication
Driven by global targets to reduce greenhouse gas emissions energy systems are expected to undergo fundamental changes. In light of carbon neutrality policies China is expected to significantly increase the proportion of hydrogen and electricity in its energy system in the future. Nevertheless the future trajectory remains shrouded in uncertainty. To explore the potential ramifications of varying growth scenarios pertaining to hydrogen and electricity on the energy landscape this study employs a meticulously designed bottom-up model. Through comprehensive scenario calculations the research aims to unravel the implications of such expansions and provide a nuanced analysis of their effects on the energy system. Results show that with an increase in electrification rates cumulative carbon dioxide emissions over a certain planning horizon could be reduced at the price of increased unit reduction costs. By increasing the share of end-use electricity and hydrogen from 71% to 80% in 2060 the unit carbon reduction cost will rise by 17%. Increasing shares of hydrogen could shorten the carbon emission peak time by approximately five years but it also brings an increase in peak shaving demand.
A Hydrogen Vision for the UK
Apr 2023
Publication
This report shows how the infrastructure that exists today can evolve from one based on the supply of fossil fuels to one providing the backbone of a clean hydrogen system. The ambitious government hydrogen targets across the UK will only be met with clarity focus and partnership. The gas networks are ready to play their part in the UK’s energy future. They have a plan know what is needed to deliver it and are taking the necessary steps to do just that.
Economic Analysis of Hydrogen Energy Systems: A Global Perspective
Aug 2024
Publication
In the realm of renewable energy the integration of wind power and hydrogen energy systems represents a promising avenue towards environmental sustainability. However the development of cost-effective hydrogen energy storage solutions is crucial to fully realize the potential of hydrogen as a renewable energy source. By combining wind power generation with hydrogen storage a comprehensive hydrogen energy system can be established. This study aims to devise a physiologically inspired optimization approach for designing a standalone wind power producer that incorporates a hydrogen energy system on a global scale. The optimization process considers both total cost and capacity loss to determine the optimal configuration for the system. The optimal setup for an off-grid solution involves the utilization of eight distinct types of compact horizontal-axis wind turbines. Additionally a sensitivity analysis is conducted by varying component capital costs to assess their impact on overall cost and load loss. Simulation results indicate that at a 15% loss the cost of energy (COE) is $1.3772 while at 0% loss it stands at $1.6908. Capital expenses associated with wind turbines and hydrogen storage systems significantly contribute to the overall cost. Consequently the wind turbine-hydrogen storage system emerges as the most cost-effective and reliable option due to its low cost of energy.
Advancing a Hydrogen Economy in Australia: Public Perceptions and Aspirations
Nov 2023
Publication
Supporters of hydrogen energy urge scaling up technology and reducing costs for competitiveness. This paper explores how hydrogen energy technologies (HET) are perceived by Australia’s general population and considers the way members of the public imagine their role in the implementation of hydrogen energy now and into the future. The study combines a nationally representative survey (n = 403) and semi-structured interviews (n = 30). Results show age and gender relationships with self-reported hydrogen knowledge. Half of the participants obtained hydrogen information from televised media. Strong support was observed for renewable hydrogen while coal (26%) and natural gas (41%) versions had less backing. Participants sought more safety-related information (41% expressed concern). Most felt uncertain about influencing hydrogen decisions and did not necessarily recognise they had agency beyond their front fence. Exploring the link between political identity and agency in energy decision-making is needed with energy democracy a potentially productive direction.
PyPSA-Earth Sector-coupled: A Global Open-source Multi-energy System Model Showcased for Hydrogen Applications in Countries of the Global South
Jan 2025
Publication
This study presents sector-coupled PyPSA-Earth: a novel global open-source energy system optimization model that incorporates major demand sectors and energy carriers in high spatial and temporal resolution to enable energy transition studies worldwide. The model includes a workflow that automatically downloads and processes the necessary demand supply and transmission data to co-optimize investment and operation of energy systems of countries or regions of Earth. The workflow provides the user with tools to forecast future demand scenarios and allows for custom user-defined data in several aspects. Sector-coupled PyPSA-Earth introduces novelty by offering users a comprehensive methodology to generate readily available sector-coupled data and model of any region worldwide starting from raw and open data sources. The model provides flexibility in terms of spatial and temporal detail allowing the user to tailor it to their specific needs. The capabilities of the model are demonstrated through two showcases for Egypt and Brazil. The Egypt case quantifies the relevant role of PV exceeding 35 GW and electrolysis in Suez and Damietta regions for meeting 16% of the EU hydrogen demand. Complementarily the Brazil case confirms the model’s ability in handling hydrogen planning infrastructure including repurposing of existing gas networks which results in 146 M€ lower costs than building new pipelines. The results prove the suitability of sector-coupled PyPSA-Earth to meet the needs of policymakers developers and scholars in advancing the energy transition. The authors invite the interested individuals and institutions to collaborate in the future developments of the model within PyPSA meets Earth initiative.
Modelling the Innovation-decision Process for Hydrogen Homes: An Integrated Model of Consumer Acceptance and Adoption Intention
Nov 2024
Publication
As the global energy transition progresses a range of drivers and barriers will continue to shape consumer attitudes and behavioural intentions towards emerging low-carbon technologies. The innovation-decision process for technologies composing the residential sector such as hydrogen-fuelled heating and cooking appliances is inherently governed by the complex interplay between perceptual cognitive and emotional factors. In response this study responds to the call for an integrated research perspective to advance theoretical and empirical insights on consumer engagement in the domestic hydrogen transition. Drawing on online survey data collected in the United Kingdom where a policy decision on ‘hydrogen homes’ is set for 2026 this study systematically explores whether an integrated modelling approach supports higher levels of explanatory and predictive power. Leveraging the foundations of the unified theory of domestic hydrogen acceptance the analysis suggests that production perceptions public trust perceived relative advantage safety perceptions knowledge and awareness and positive emotions will shape consumer support for hydrogen homes. Conversely perceived disruptive impacts perceived socio-economic costs financial perceptions and negative emotions may impede the domestic hydrogen transition. Consumer acceptance stands to significantly shape deployment prospects for hydrogen boilers and hobs which are perceived to be somewhat advantageous to natural gas appliances from a technological and safety perspective. The study attests to the predictive benefits of adopting an integrated theoretical perspective when modelling the early stages of the innovation-decision process while acknowledging opportunities for leveraging innovative research approaches in the future. As national hydrogen economies gain traction adopting a neuroscience-based approach may help deepen scientific understanding regarding the neural psychological and emotional signatures shaping consumer perspectives towards hydrogen homes.
Comparative Socio-economic Analysis and Green Transition Perspectives in the Green Hydrogen Economy of Sub-Saharan Africa and South America Countries
Sep 2025
Publication
The global shift toward a green hydrogen economy requires diversifying production beyond the Middle East and North Africa where political logistical and water constraints limit long-term supply. This study provides a comparative socio-economic assessment of Sub-Saharan African and South American countries focusing on their readiness for large-scale green hydrogen development. A Green Economy Index (GEI) was developed integrating political/regulatory efficiency socio-economic status infrastructure and sustainability indicators. In addition public perception was examined through a survey conducted in Nigeria. Results show GEI scores ranging from 0.328 to 0.744 with Germany as the benchmark. Brazil Uruguay and Namibia emerge as the most promising cases due to strong renewable energy potential socio-economic stability and supportive policies though each faces specific challenges such as transport logistics (Brazil and Uruguay) or water scarcity (Namibia). Nigeria demonstrates significant potential but is constrained by weak infrastructure and public safety concerns. Cameroon Angola and Gabon display moderate performance but require policy and investment reforms. By combining macro-level readiness analysis with social acceptance insights the study highlights opportunities and barriers for diversifying global hydrogen supply chains and advancing sustainable energy transitions in emerging regions.
No more items...