Production & Supply Chain
Optimising Mini-grid Efficiency in Ghana: A Techno-economic Analysis of Hydrogen Production from Redundent Solar Energy for Fuel Cell Power Generation
Sep 2025
Publication
Rural mini-grids in Ghana often experience substantial midday solar PV generation surpluses due to mismatches between peak production and local demand with excess energy (redundant energy) frequently curtailed once batteries are fully charged. This underutilisation limits the socio-economic benefits of renewable electrification and highlights the need for alternative long-duration storage solutions. This study investigated the technoeconomic feasibility of converting excess PV energy from a 54 kWp mini-grid in Aglakope Ghana into hydrogen via electrolysis storing it and reconverting it to electricity using fuel cells. Redundant energy generation was quantified using measured PV output and load consumption and validated using statistical error metrics (R2 = 0.955). Hydrogen production and recovery potential were modelled for different electrolyser technologies and system performance was evaluated using round-trip efficiency (RTE) levelized cost of hydrogen (LCOH) and levelized cost of storage (LCOS) with comparative analysis against additional battery capacity. The results yielded an average monthly excess energy of about 2250 kWh convertible into 43–53 kg per month of hydrogen depending on electrolyser type. The proposed hydrogen-fuel cell pathway yielded a RTE of 44.4 % LCOH of $4.97/kg and LCOS of $0.249/kWh which is about 13 % higher than lithium-ion storage benchmarks. The study findings demonstrate that hydrogen storage can complement batteries offer seasonal and multi-day storage capability and reduce renewable curtailment. Therefore wider adoption could be supported by cost reductions efficiency improvements and enabling policies positioning hydrogen-based storage as a viable pathway for resilient low-carbon rural electrification in off-grid contexts.
Life Cycle Cost Assessment of PEM Water Electrolysis Systems: A System Dynamics-intuitionistic Fuzzy Bayesian Network Approach
Sep 2025
Publication
Proton exchange membrane water electrolysis is a core technology for green hydrogen production but its widespread adoption is hindered by a prohibitively high and uncertain life cycle cost. To address the dynamic complexity and multi-source uncertainties inherent in cost assessment this paper proposes an integrated modeling framework that combines system dynamics with an intuitionistic fuzzy bayesian network. The system dynamics model captures the macro-level feedback loops driving long-term cost evolution such as technological innovation economy-of-scale effects and other critical factors. To model and infer causal dependencies among uncertain variables that are challenging to specify precisely within the system dynamics model the intuitionistic fuzzy bayesian network is incorporated enabling quantification of relationships under conditions of incomplete data and cognitive fuzziness. Through comprehensive simulations the framework forecasts the cost evolution trajectories. Results indicate a potential 77 % reduction in the unit power cost of a 1 MW system by 2060. Uncertainty analysis revealed that the initial prediction variance for the catalyst layer was approximately 20 % significantly higher than the 6.5 % for the bipolar plate highlighting a key investment risk. A comparative analysis demonstrates that the proposed framework achieves a superior forecast accuracy with a mean absolute percentage error of 4.8 %. The proposed method provides a more accurate and robust decision support tool for long-term investment planning and policy formulation for hydrogen production through proton exchange membrane water electrolysis technology.
Predictive Modelling of Hydrogen Production from Agricultural and Forestry Residues through a Thermo-catalytic Reforming Process
Sep 2025
Publication
Hydrogen produced from renewable sources is crucial for decarbonizing hard-to-abate sectors and achieving netzero targets. This study examines hydrogen production through the novel thermo-catalytic reforming (TCR) process using agricultural and forestry residues. The research aims to develop and optimize regression models that integrate feedstock properties (ash hydrogen-to-carbon molar ratio and lignin) and process parameters (reactor and reformer temperatures) to predict yields of hydrogen (H2) syngas methane (CH4) and carbon dioxide (CO2). Three biomass feedstocks – softwood pellets (SWPs) hardwood pellets (HWPs) and wheat straw pellets (WSPs) – were analyzed at reactor temperatures of 400–550 ◦C and reformer temperatures of 500–700 ◦C. Predictive models for H2 (R2 = 0.9642 RMSE = 1.0639) and syngas (R2 = 0.9894 RMSE = 0.0140) yields show strong agreement and accuracy between the predicted and experimental values. In contrast the models for CH4 and CO2 yields show higher variability in the predictions. Reformer temperature was the most significant parameter influencing the yields of H2 and syngas. The optimal H2 yields predicted for the model were obtained for HWPs at 550/700 ◦C (26.67 g H2/kg dry biomass) followed by SWPs at 550/700 ◦C (24.11 g H2/kg dry biomass) and WSPs at 550/685.2 ◦C (18.78 g H2/kg dry biomass). The volumetric syngas yields were highest for HWPs at 550/700 ◦C (0.831 Nm3 /kg dry biomass) followed by SWPs (0.777 Nm3 /kg dry biomass) and WSPs (0.634 Nm3 /kg dry biomass). This study demonstrates that regression modelling accurately predicts H2 and syngas yields which would help to expand the applicability of TCR technology for large-scale hydrogen production contributing to the decarbonization of the energy sector.
Sorption-enhanced Steam Gasification of Biomass for H2-rich Gas Production and In-situ CO2 Capture by CaO-based Sorbents: A Critical Review
Feb 2023
Publication
The sorption-enhanced steam gasification of biomass (SEBSG) is considered a prospective thermo-chemical technology for high-purity H2 production with in-situ CO2 capture. Fundamental concepts and operating conditions of SEBSG technology were summarized in this review. Considerable industrial demonstration units have been conducted on pilot scales for large-scale availability of the SEBSG process. The influence of process parameters such as reaction temperature Steam/Biomass (S/B) ratio feedstock characteristics cyclic CO2 capture capacity of CaO-based sorbents and catalysis were critically reviewed to provide theoretical recommendations for industrial operation. Bifunctional materials that have high catalytic activity and CO2 capture activity are crucial for ensuring high H2 production in the SEBSG. The application of density functional theory (DFT) and reactive force field molecular dynamic (ReaxFF MD) simulations on microcosmic reaction mechanisms in the SEBSG process such as pyrolysis WGS and reforming reactions and CO2 capture of CaO-based materials are comprehensively overviewed. Several research gaps like the exploitation of more efficient and low-cost bifunctional material integrated process economics and revelation of well-rounded mechanisms need to be filled for the following large-scale industrial applications.
Photocatalytic Water Splitting for Large-scale Solar-to-chemical Energy Conversion and Storage
Dec 2024
Publication
Sunlight-driven water splitting allows renewable hydrogen to be produced from abundant and environmentally benign water. Large-scale societal implementation of this green fuel production technology within energy generation systems is essential for the establishment of sustainable future societies. Among various technologies photocatalytic water splitting using particulate semiconductors has attracted increasing attention as a method to produce large amounts of green fuels at low cost. The key to making this technology practical is the development of photocatalysts capable of splitting water with high solar-to-fuel energy conversion efficiency. Furthermore advances that enable the deployment of water-splitting photocatalysts over large areas are necessary as is the ability to recover hydrogen safely and efficiently from the produced oxyhydrogen gas. This lead article describes the key discoveries and recent research trends in photosynthesis using particulate semiconductors and photocatalyst sheets for overall water splitting via one-step excitation and two-step excitation (Z-scheme reactions) as well as for direct conversion of carbon dioxide into renewable fuels using water as an electron donor. We describe the latest advances in solar watersplitting and carbon dioxide reduction systems and pathways to improve their future performance together with challenges and solutions in their practical application and scalability including the fixation of particulate photocatalysts hydrogen recovery safety design of reactor systems and approaches to separately generate hydrogen and oxygen from water.
Recent Progress on Ammonia Cracking Technologies for Scalable Hydrogen Production
Jun 2024
Publication
The global energy transition necessitates the development of technologies enabling cost-effective and scalable conversion of renewable energies into storable and transportable forms. Green ammonia with its high hydrogen storage capacity emerges as a promising carbon-free hydrogen carrier. This article reviews recent progress in industrially relevant catalysts and technologies for ammonia cracking which is a pivotal step in utilizing ammonia as a hydrogen storage material. Catalysts based on Ru Ni Fe Co and Fe–Co are evaluated with Cobased catalysts showing exceptional potential for ammonia cracking. Different reactor technologies and their applications are briefly discussed. This review concludes with perspectives on overcoming existing challenges emphasizing the need for catalyst development effective reactor design and sustainable implementation in the context of the energy transition.
Engineered Seabed Sediment via Microwave-assisted NI2+ Substitution as a Catalyst for Double-Stage Pyrolysis of Plastic Waste: A Novel Approach to Methane Reforming and Enhanced Hydrogen Production
Jul 2025
Publication
This study engineered seabed sediment with microwave-assisted Ni2+ -substitution to enhance its composition and properties. The catalytic activity of microwave-assisted Ni2+ - substituted seabed sediment (Mwx%Ni-SB) was investigated in the two-stage pyrolysis of plastic waste for hydrogen production. The characterization reveals microwave irradiation synergistically modifies the physical properties (increasing functional groups reducing crystallinity) and electronic properties (modulating bandgap energy increasing electron density) of the Mwx%Ni-SB thereby improving methane reforming performance. Microwave treatment compresses and rearranges Ni2+ ions within the sediment lattice resulting in increased order and density and creating defects that enhance catalytic activity. GC-TCD analysis demonstrates that the use of catalysts in the first and second stages more than doubled hydrogen production (109.74%) compared to not using catalysts. Therefore increased Ni2+ substitution significantly reduced methane production by 49.04% while simultaneously boosting hydrogen production by 23.00%.
Techno-economic Analysis of Integrated Wind-solar Energy Systems for Green Hydrogen Production
Sep 2025
Publication
‘Green’ hydrogen produced by the electrolysis of water using renewable energy sources is expected to become a versatile energy carrier in the future. This study examined the techno-economic performance of combined offshore wind-solar energy systems for hydrogen production in Choshi Chiba Prefecture Japan a region with high average wind speeds. Hourly wind speed and solar radiation data were used to simulate hydrogen production under two system configurations: unlimited power cuts without batteries and no power cuts with battery storage. In the no-power-cut case battery integration increased the nominal hydrogen cost by 43.8 % 17.7 % and 19.8 % in 2025 2030 and 2050 respectively. However sensitivity analysis considering higher electrolyzer OPEX due to degradation revealed that the unlimited power-cut system can become more expensive making battery-supported systems economically favorable over the long term. These findings highlight the importance of integrating battery storage to enhance technical reliability and economical pathways for offshore wind–solar hydrogen production systems.
Enhancing Bioelectrochemical Hydrogen Production from Industrial Wastewater using NI-foam Cathodes in a Microbial Electrolysis Cell Pilot Plant
Apr 2024
Publication
Microbial electrolysis cells (MECs) have garnered significant attention as a promising solution for industrial wastewater treatment enabling the simultaneous degradation of organic compounds and biohydrogen production. Developing efficient and cost-effective cathodes to drive the hydrogen evolution reaction is central to the success of MECs as a sustainable technology. While numerous lab-scale experiments have been conducted to investigate different cathode materials the transition to pilot-scale applications remains limited leaving the actual performance of these scaled-up cathodes largely unknown. In this study nickel-foam and stainless-steel wool cathodes were employed as catalysts to critically assess hydrogen production in a 150 L MEC pilot plant treating sugar-based industrial wastewater. Continuous hydrogen production was achieved in the reactor for more than 80 days with a maximum COD removal efficiency of 40 %. Nickel-foam cathodes significantly enhanced hydrogen production and energy efficiency at non-limiting substrate concentration yielding the maximum hydrogen production ever reported at pilot-scale (19.07 ± 0.46 L H2 m− 2 d− 1 and 0.21 ± 0.01 m3 m− 3 d− 1 ). This is a 3.0-fold improve in hydrogen production compared to the previous stainless-steel wool cathode. On the other hand the higher price of Ni-foam compared to stainless-steel should also be considered which may constrain its use in real applications. By carefully analysing the energy balance of the system this study demonstrates that MECs have the potential to be net energy producers in addition to effectively oxidize organic matter in wastewater. While higher applied potentials led to increased energy requirements they also resulted in enhanced hydrogen production. For our system a conservative applied potential range from 0.9 to 1.0 V was found to be optimal. Finally the microbial community established on the anode was found to be a syntrophic consortium of exoelectrogenic and fermentative bacteria predominantly Geobacter and Bacteroides which appeared to be well-suited to transform complex organic matter into hydrogen.
Advances in Catalysts for Hydrogen Production: A Comprehensive Review of Materials and Mechanisms
Feb 2025
Publication
This review explores the recent advancements in catalyst technology for hydrogen production emphasizing the role of catalysts in efficient and sustainable hydrogen generation. This involves a comprehensive analysis of various catalyst materials including noble metals transition metals carbon-based nanomaterials and metal–organic frameworks along with their mechanisms and performance outcomes. Major findings reveal that while noble metal catalysts such as platinum and iridium exhibit exceptional activity their high cost and scarcity necessitate the exploration of alternative materials. Transition metal catalysts and single-atom catalysts have emerged as promising substitutes demonstrating their potential for enhancing catalytic efficiency and stability. These findings underscore the importance of interdisciplinary approaches to catalyst design which can lead to scalable and economically viable hydrogen production systems. The review concludes that ongoing research should focus on addressing challenges related to catalyst stability scalability and the integration of renewable energy sources paving the way for a sustainable hydrogen economy. By fostering innovation in catalyst development this work aims to contribute to the transition towards cleaner energy solutions and a more resilient energy future.
Floating Solar Energy Systems: A Review of Economic Feasibility and Cross-Sector Integration with Marine Renewable Energy, Aquaculture and Hydrogen
Jul 2025
Publication
Excessive reliance on traditional energy sources such as coal petroleum and gas leads to a decrease in natural resources and contributes to global warming. Consequently the adoption of renewable energy sources in power systems is experiencing swift expansion worldwide especially in offshore areas. Floating solar photovoltaic (FPV) technology is gaining recognition as an innovative renewable energy option presenting benefits like minimized land requirements improved cooling effects and possible collaborations with hydropower. This study aims to assess the levelized cost of electricity (LCOE) associated with floating solar initiatives in offshore and onshore environments. Furthermore the LCOE is assessed for initiatives that utilize floating solar PV modules within aquaculture farms as well as for the integration of various renewable energy sources including wind wave and hydropower. The LCOE for FPV technology exhibits considerable variation ranging from 28.47 EUR/MWh to 1737 EUR/MWh depending on the technologies utilized within the farm as well as its geographical setting. The implementation of FPV technology in aquaculture farms revealed a notable increase in the LCOE ranging from 138.74 EUR/MWh to 2306 EUR/MWh. Implementation involving additional renewable energy sources results in a reduction in the LCOE ranging from 3.6 EUR/MWh to 315.33 EUR/MWh. The integration of floating photovoltaic (FPV) systems into green hydrogen production represents an emerging direction that is relatively little explored but has high potential in reducing costs. The conversion of this energy into hydrogen involves high final costs with the LCOH ranging from 1.06 EUR/kg to over 26.79 EUR/kg depending on the complexity of the system.
Impact of Cell Design and Conditioning on Polymer Electrolyte Membrane Water Electrolyzer Operation
Nov 2024
Publication
Integration of polymer electrolyte membrane water electrolyzers (PEMWEs) for clean hydrogen generation requires a robust understanding of the impact cell designs and conditioning protocols have on operation and stability. Here catalyst-coated electrode and catalyst-coated membrane cells employing Pt/C cathode catalyst layer an IrO2 anode catalyst layer with a platinized titanium mesh or a carbon paper with a microporous layer as the porous transport layer were developed. The impact of cell conditioning above and below 0.25 A cm− 2 was investigated using advanced electrochemical impedance spectroscopy analyses and microscopic imaging with the electrochemical response related to physicochemical processes. Operation below 0.25 A cm− 2 prior to operation above 0.25 A cm− 2 resulted in anode corrosion and titanium cation contamination increasing the cell voltage at 1 A cm− 2 by 200 mV compared to uncontaminated cells. Conditioning above 0.25 A cm− 2 led to nonnegligible hydrogen transport resistances due to cathode flooding that resulted in a ca. 50 mV contribution at 1 A cm− 2 and convoluted with the anode impedance response. The presence of a microporous layer increased catalyst utilization but increased the cell voltage by 300 mV at 1 A cm− 2 due to increased anodic mass transport resistances. These results yield critical insights into the impact of PEMWE cell design and operation on corresponding cell performance and stability while highlighting the need for application dependent standardized operating protocols and operational windows.
Applications of Renewable Energies in Low-Temperature Regions: A Scientometric Analysis of Recent Advancements and Future Research Directions
Feb 2025
Publication
This study presents a scientometric analysis of renewable energy applications in low-temperature regions focusing on green hydrogen production carbon storage and emerging trends. Using bibliometric tools such as RStudio and VOSviewer the research evaluates publication trends from 1988 to 2024 revealing an exponential growth in renewable energy studies post-2021 driven by global policies promoting carbon neutrality. Life cycle assessment (LCA) plays a crucial role in evaluating the environmental impact of energy systems underscoring the need to integrate renewable sources for emission reduction. Hydrogen production via electrolysis has emerged as a key solution in decarbonizing hardto-abate sectors while carbon storage technologies such as bioenergy with carbon capture and storage (BECCS) are gaining traction. Government policies including carbon taxes fossil fuel phase-out strategies and renewable energy subsidies significantly shape the energy transition in cold regions by incentivizing low-carbon alternatives. Multi-objective optimization techniques leveraging artificial intelligence (AI) and machine learning are expected to enhance decision-making processes optimizing energy efficiency reliability and economic feasibility in renewable energy systems. Future research must address three critical challenges: (1) strengthening policy frameworks and financial incentives for largescale renewable energy deployment (2) advancing energy storage hydrogen production and hybrid energy systems and (3) integrating multi-objective optimization approaches to enhance cost-effectiveness and resilience in extreme climates. It is expected that the research will contribute to the field of knowledge regarding renewable energy applications in low-temperature regions.
Hydrogen Production During Ethylene Glycol Photoreactions Over Ag-Pd/TiO2 at Different Partial Pressures of Oxygen
Nov 2019
Publication
The reaction of ethylene glycol has been studied over Ag–Pd/TiO2 (anatase) under photo-irradiation while monitoring the reaction products (in the gas and liquid phases) as a function of time and at different partial pressures of molecular oxygen. The catalyst contained metal particles with a mean size of about 1 nm most likely in the form of alloy (TEM STEM and XPS). The complex reaction network involves hydrogen abstraction C-C bond dissociation de-carbonylation and water gas shift ultimately yielding hydrogen and CO2. The two main competing reactions were found to be photo reforming and photo-oxidation. Based on our previous study Ag presence improves the reaction rate for hydrogen production most likely via decreasing the adsorption energy of CO when compared to pure Pd. At high ethylene glycol concentrations the rate of hydrogen produced decreased by a factor of two while changing O2 partial pressure from 0.001 to 0.2 atm. The rate was however very sensitive to oxygen partial pressures at low ethylene glycol concentrations decreasing by about 50 times with increasing oxygen pressures to 1 atm. The order of reaction with respect to O2 changed from near zero at high oxygen partial pressure to ½ at low partial pressure (in 0.008–0.2 atm. range). Liquid phase analysis indicated that the main reaction product was formaldehyde where its concentration was found to be higher than that of H2 and CO2. The mass balance approached near unity only upon the incorporation of formaldehyde and after a prolonged reaction time. This suggests that the photo-reforming reaction was not complete even at prolonged time most likely due to kinetic limitations.
Designing a Photovoltaic–Wind Energy Mix with Energy Storage for Low-Emission Hydrogen Production
Feb 2025
Publication
In the introduction to this article a brief overview of the generated energy and the power produced by the photovoltaic systems with a peak power of 3 MWp and different tilt and orientation of the photovoltaic panels is given. The characteristics of the latest systems generating energy by wind turbines with a capacity of 3.45 MW are also presented. In the subsequent stages of the research the necessity of balancing the energy in power networks powered by a mix of renewable energy sources is demonstrated. Then a calculation algorithm is presented in the area of balancing the energy system powered by a photovoltaic–wind energy mix and feeding the low-emission hydrogen production process. It is analytically and graphically demonstrated that the process of balancing the entire system can be influenced by structural changes in the installation of the photovoltaic panels. It is proven that the tilt angle and orientation of the panels have a significant impact on the level of power generated by the photovoltaic system and thus on the energy mix in individual hourly intervals. Research has demonstrated that the implementation of planned design changes in the assembly of panels in a photovoltaic system allows for a reduction in the size of the energy storage system by more than 2 MWh. The authors apply actual measurement data from a specific geographical context i.e. from the Lublin region in Poland. The calculations use both traditional statistical methods and probabilistic analysis. Balancing the generated power and the energy produced for the entire month considered in hourly intervals throughout the day is the essence of the calculations made by the authors.
Thermochemical Production of Hydrogen from Biomass: Pyrolysis and Gasification
Jan 2024
Publication
Today hydrogen is one of the best options for generating electrical energy for both industrial and residential use. The greatest volume of hydrogen produced today derives from processes that utilize petroleum. Although hydrogen has numerous benefits continuing to produce it by these means is undesirable. This document presents a review of the literature on biohydrogen production based on an analysis of over 15 types of terrestrial and marine biomasses. The fundamental components of different production systems are described with a focus on the thermochemical processes of pyrolysis and gasification which have been identified as two of the most effective practical ways to produce hydrogen from biomass. It also discusses catalysts solid residues and residual water that are used in the thermochemical production of biohydrogen. The article ends with an analysis of hydrogen and its benefits as an energy option with great potential in the short term to participate in the transition from fossil fuels.
Techno-economic Analysis with Electrolyser Degradation Modelling in Green Hydrogen Production Scenarios
Feb 2025
Publication
A pivotal ambition to aid global decarbonisation efforts is green electrolytic hydrogen produced with renewable energy. Prolonged operation of water electrolysers induces cell degradation decreasing production efficiency and gas yield over the lifespan of the electrolyser stack. Considerations for degradation modelling is seen to a varying extent in previous literature. This work shows the effects of including degradation modelling within existing system scenarios and new ones to demonstrate the impact of inclusion on key techno-economic parameters. A fundamental Anion Exchange Membrane electrolyser model is constructed validated and utilised into a broader hydrogen and oxygen co-production system powered by solar-PV. A second scenario tests the compatibility of the no-degradation trend with reference material and then investigates the effects of including degradation modelling showing only a 1.47% increase in levelised cost of hydrogen (LCOH). Subsequent scenarios include determining that byproduct oxygen utilisation becomes beneficial for a scenario with rated electrolyser power of above 35 MW and the observations related to stack replacement strategies are discussed. Under hypothetically higher degradation rates detriment to gas yield and LCOH is around 5% for average operational degradation rates of 15–20 μV/hr and around 10% for 30–40 μV/hr compared to around 2% for the model baseline average rate of 5.23–5.26 μV/hr.
Ultra-fast Green Hydrogen Production from Municipal Wastewater by an Integrated Forward Osmosis-alkaline Water Electrolysis System
Mar 2024
Publication
Recent advancements in membrane-assisted seawater electrolysis powered by renewable energy offer a sustainable path to green hydrogen production. However its large-scale implementation faces challenges due to slow powerto-hydrogen (P2H) conversion rates. Here we report a modular forward osmosis-water splitting (FOWS) system that integrates a thin-film composite FO membrane for water extraction with alkaline water electrolysis (AWE) denoted as FOWSAWE. This system generates high-purity hydrogen directly from wastewater at a rate of 448 Nm3 day−1 m−2 of membrane area over 14 times faster than the state-of-the-art practice with specific energy consumption as low as 3.96 kWh Nm−3 . The rapid hydrogen production rate results from the utilisation of 1 M potassium hydroxide as a draw solution to extract water from wastewater and as the electrolyte of AWE to split water and produce hydrogen. The current system enables this through the use of a potassium hydroxide-tolerant and hydrophilic FO membrane. The established waterhydrogen balance model can be applied to design modular FO and AWE units to meet demands at various scales from households to cities and from different water sources. The FOWSAWE system is a sustainable and an economical approach for producing hydrogen at a record-high rate directly from wastewater marking a significant leap in P2H practice.
Performance Analysis of Silica Fluidized Bed Membrane Reactor for Hydrogen Production as a Green Process Using CFD Modelling
Aug 2025
Publication
The main aim of this study deals with the potential evaluation of a fluidized bed membrane reactor (FBMR) for hydrogen production as a clean fuel carrier via methanol steam reforming reaction comparing its performance with other reactors including packed bed membrane reactors (PBMR) fluidized bed reactors (FBR) and packed bed reactors (PBR). For this purpose a two-dimensional axisymmetric numerical model was developed using computational fluid dynamics (CFD) to simulate the reactor performances. Model accuracy was validated by comparing the simulation results for PBMR and PB with experimental data showing an accurate agreement within them. The model was then employed to examine the effects of key operating parameters including reaction temperature pressure steam-to-methanol molar ratio and gas volumetric space velocity on reactor performance in terms of methanol conversion hydrogen yield hydrogen recovery and selectivity. At 573 K 1 bar a feed molar ratio of 3/1 and a space velocity of 9000 h−1 the PBMR reached the best results in terms of methanol conversion hydrogen yield hydrogen recovery and hydrogen selectivity such as 67.6% 69.5% 14.9% and 97.1% respectively. On the other hand the FBMR demonstrated superior performance with respect to the latter reaching a methanol conversion of 98.3% hydrogen yield of 95.8% hydrogen recovery of 74.5% and hydrogen selectivity of 97.4%. These findings indicate that the FBMR offers significantly better performance than the other reactor types studied in this work making it a highly efficient method for hydrogen production through methanol steam reforming and a promising pathway for clean energy generation.
Comparative Analysis of Power Converter Topologies for Hydrogen Electrolyzers
Oct 2024
Publication
Power electronic converters are essential for connecting high-power electrolyzers to ac grids. The existing literature on comparative analyses of AC-DC power converters for electrolyzer applications is often limited to thyristor rectifiers (TRs) and diode bridge rectifiers with DC-DC converters. Interestingly active front-end (AFE) power converters have not garnered much attention. In addition critical aspects such as the impact of nonideal grid behaviors (e.g. voltage harmonics or voltage variations) on the sizing of power devices have not been addressed. This article aims to fill this gap by presenting a comprehensive comparative analysis of four distinct power converter topologies: TRs diode rectifiers (DRs) with DC-DC AFE power converters and AFE power converters with DC-DC. This analysis covers the aspects related to ac (grid) and dc (electrolyzer) power quality effects due to grid voltage variations and harmonics filter requirements component sizing aging of electrolyzer cost and efficiency.
No more items...