Production & Supply Chain
Black TiO2 for Solar Hydrogen Conversion
Feb 2017
Publication
Titanium dioxide (TiO2 ) has been widely investigated for photocatalytic H2 evolution and photoelectrochemical (PEC) water splitting since 1972. However its wide bandgap (3.0–3.2 eV) limits the optical absorption of TiO2 for sufficient utilization of solar energy. Blackening TiO2 has been proposed as an effective strategy to enhance its solar absorption and thus the photocatalytic and PEC activities and aroused widespread research interest. In this article we reviewed the recent progress of black TiO2 for photocatalytic H2 evolution and PEC water splitting along with detailed introduction to its unique structural features optical property charge carrier transfer property and related theoretical calculations. As summarized in this review article black TiO2 could be a promising candidate for photoelectrocatalytic hydrogen generation via water splitting and continuous efforts are deserved for improving its solar hydrogen efficiency.
Power-to-gas for Injection into the Gas Grid: What Can We Learn from Real-life Projects, Economic Assessments and Systems Modelling
Sep 2018
Publication
Power-to-gas is a key area of interest for decarbonisation and increasing flexibility in energy systems as it has the potential both to absorb renewable electricity at times of excess supply and to provide backup energy at times of excess demand. By integrating power-to-gas with the natural gas grid it is possible to exploit the inherent linepack flexibility of the grid and shift some electricity variability onto the gas grid. Furthermore provided the gas injected into the gas grid is low-carbon such as hydrogen from renewable power-to-gas then overall greenhouse gas emissions from the gas grid can be reduced.<br/>This work presents the first review of power-to-gas to consider real-life projects economic assessments and systems modelling studies and to compare them based on scope assumptions and outcomes. The review focuses on power-to-gas for injection into the gas grid as this application has specific economic technical and modelling opportunities and challenges.<br/>The review identified significant interest in and potential for power-to-gas in combination with the gas grid however there are still challenges to overcome to find profitable business cases and manage local and system-wide technical issues. Whilst significant modelling of power-to-gas has been undertaken more is needed to fully understand the impacts of power-to-gas and gas grid injection on the operational behaviour of the gas grid taking into account dynamic and spatial effects.
A Production and Delivery Model of Hydrogen from Solar Thermal Energy in the United Arab Emirates
May 2022
Publication
Hydrogen production from surplus solar electricity as energy storage for export purposes can push towards large-scale application of solar energy in the United Arab Emirates and the Middle East region; this region’s properties of high solar irradiance and vast empty lands provide a good fit for solar technologies such as concentrated solar power and photovoltaics. However a thorough comparison between the two solar technologies as well as investigating the infrastructure of the United Arab Emirates for a well-to-ship hydrogen pathway is yet to be fully carried out. Therefore in this study we aim to provide a full model for solar hydrogen production and delivery by evaluating the potential of concentrated solar power and photovoltaics in the UAE then comparing two different pathways for hydrogen delivery based on the location of hydrogen production sites. A Solid Oxide Cell Electrolyzer (SOEC) is used for technical comparison while the shortest routes for hydrogen transport were analyzed using Geographical Information System (GIS). The results show that CSP technology coupled with SOEC is the most favorable pathway for large-scale hydrogen from solar energy production in the UAE for export purposes. Although PV has a slightly higher electricity potential compared to CSP around 42 GWh/km2 to 41.1 GWh/km2 respectively CSP show the highest productions rates of over 6 megatons of hydrogen when the electrolyzer is placed at the same site as the CSP plant while PV generates 5.15 megatons when hydrogen is produced at the same site with PV plants; meanwhile hydrogen from PV and CSP shows similar levels of 4.8 and 4.6 megatons of hydrogen respectively when electrolyzers are placed at port sites. Even considering the constraints in the UAE’s infrastructure and suggesting new shorter electrical transmission lines that could save up to 0.1 megatons of hydrogen in the second pathway production at the same site with CSP is still the most advantageous scenario.
Power-to-Gas: Electrolysis and Methanation Status Review
Jun 2019
Publication
This review gives a worldwide overview on Power-to-Gas projects producing hydrogen or renewable substitute natural gas focusing projects in central Europe. It deepens and completes the content of previous reviews by including hitherto unreviewed projects and by combining project names with details such as plant location. It is based on data from 153 completed recent and planned projects since 1988 which were evaluated with regards to plant allocation installed power development plant size shares and amounts of hydrogen or substitute natural gas producing examinations and product utilization phases. Cost development for electrolysis and carbon dioxide methanation was analyzed and a projection until 2030 is given with an outlook to 2050.<br/>The results show substantial cost reductions for electrolysis as well as for methanation during the recent years and a further price decline to less than 500 euro per kilowatt electric power input for both technologies until 2050 is estimated if cost projection follows the current trend. Most of the projects examined are located in Germany Denmark the United States of America and Canada. Following an exponential global trend to increase installed power today's Power-to-Gas applications are operated at about 39 megawatt. Hydrogen and substitute natural gas were investigated on equal terms concerning the number of projects.
Achievements of European Projects on Membrane Reactor for Hydrogen Production
May 2017
Publication
Membrane reactors for hydrogen production can increase both the hydrogen production efficiency at small scale and the electric efficiency in micro-cogeneration systems when coupled with Polymeric Electrolyte Membrane fuel cells. This paper discusses the achievements of three European projects (FERRET FluidCELL BIONICO) which investigate the application of the membrane reactor concept to hydrogen production and micro-cogeneration systems using both natural gas and biofuels (biogas and bio-ethanol) as feedstock. The membranes used to selectively separate hydrogen from the other reaction products (CH4 CO2 H2O etc.) are of asymmetric type with a thin layer of Pd alloy (<5 μm) and supported on a ceramic porous material to increase their mechanical stability. In FERRET the flexibility of the membrane reactor under diverse natural gas quality is validated. The reactor is integrated in a micro-CHP system and achieves a net electric efficiency of about 42% (8% points higher than the reference case). In FluidCELL the use of bio-ethanol as feedstock for micro-cogeneration Polymeric Electrolyte Membrane based system is investigated in off-grid applications and a net electric efficiency around 40% is obtained (6% higher than the reference case). Finally BIONICO investigates the hydrogen production from biogas. While BIONICO has just started FERRET and FluidCELL are in their third year and the two prototypes are close to be tested confirming the potentiality of membrane reactor technology at small scale.
The Role of the Substrate on the Mechanical and Thermal Stability of Pd Thin Films During Hydrogen (De)sorption
Nov 2020
Publication
In this work we studied the mechanical and thermal stability of ~100 nm Pd thin films magnetron sputter deposited on a bare oxidized Si(100) wafer a sputtered Titanium (Ti) intermediate layer and a spin-coated Polyimide (PI) intermediate layer. The dependence of the film stability on the film morphology and the film-substrate interaction was investigated. It was shown that a columnar morphology with elongated voids at part of the grain boundaries is resistant to embrittlement induced by the hydride formation (α↔β phase transitions). For compact film morphology depending on the rigidity of the intermediate layer and the adherence to the substrate complete transformation (Pd-PI-SiO2/Si) or partly suppression (Pd-Ti-SiO2/Si) of the α to β-phase was observed. In the case of Pd without intermediate layer (Pd-SiO2/Si) buckling delamination occurred. The damage and deformation mechanisms could be understood by the analysis of the stresses and dislocation (defects) behavior near grain boundaries and the film-substrate interface. From diffraction line-broadening combined with microscopy analysis we showed that in Pd thin films stresses relax at critical stress values via different relaxation pathways depending on film-microstructure and film-substrate interaction. On the basis of the in-situ hydriding experiments it was concluded that a Pd film on a flexible PI intermediate layer exhibits free-standing film-like behavior besides being strongly clamped on a stiff SiO2/Si substrate.
Debunking the Myths of Hydrogen Production and Water Consumption
Dec 2020
Publication
In our factsheet where we debunk 3 myths around hydrogen production and water consumption: electrolysis uses vast amounts of water; electrolysis uses freshwater resources only and electrolysis is bound to create water stress in water-scarce regions.
Decarbonization Synergies From Joint Planning of Electricity and Hydrogen Production: A Texas Case Study
Oct 2020
Publication
Hydrogen (H2) shows promise as an energy carrier in contributing to emissions reductions from sectors which have been difficult to decarbonize like industry and transportation. At the same time flexible H2 production via electrolysis can also support cost-effective integration of high shares of variable renewable energy (VRE) in the power system. In this work we develop a least-cost investment planning model to co-optimize investments in electricity and H2 infrastructure to serve electricity and H2 demands under various low-carbon scenarios. Applying the model to a case study of Texas in 2050 we find that H2 is produced in approximately equal amounts from electricity and natural gas under the least-cost expansion plan with a CO2 price of $30–60/tonne. An increasing CO2 price favors electrolysis while increasing H2 demand favors H2 production from Steam Methane Reforming (SMR) of natural gas. H2 production is found to be a cost effective solution to reduce emissions in the electric power system as it provides flexibility otherwise provided by natural gas power plants and enables high shares of VRE with less battery storage. Additionally the availability of flexible electricity demand via electrolysis makes carbon capture and storage (CCS) deployment for SMR cost-effective at lower CO2 prices ($90/tonne CO2) than for power generation ($180/tonne CO2 ). The total emissions attributable to H2 production is found to be dependent on the H2 demand. The marginal emissions from H2 production increase with the H2 demand for CO2 prices less than $90/tonne CO2 due to shift in supply from electrolysis to SMR. For a CO2 price of $60/tonne we estimate the production weighted-average H2 price to be between $1.30–1.66/kg across three H2 demand scenarios. These findings indicate the importance of joint planning of electricity and H2 infrastructure for cost-effective energy system decarbonization.
Probability of Occurrence of ISO 14687-2 Contaminants in Hydrogen: Principles and Examples from Steam Methane Reforming and Electrolysis (Water and Chlor-alkali) Production Processes Model
Apr 2018
Publication
According to European Directive 2014/94/EU hydrogen providers have the responsibility to prove that their hydrogen is of suitable quality for fuel cell vehicles. Contaminants may originate from hydrogen production transportation refuelling station or maintenance operation. This study investigated the probability of presence of the 13 gaseous contaminants (ISO 14687-2) in hydrogen on 3 production processes: steam methane reforming (SMR) process with pressure swing adsorption (PSA) chlor-alkali membrane electrolysis process and water proton exchange membrane electrolysis process with temperature swing adsorption. The rationale behind the probability of contaminant presence according to process knowledge and existing barriers is highlighted. No contaminant was identified as possible or frequent for the three production processes except oxygen (frequent for chlor-alkali membrane process) carbon monoxide (frequent) and nitrogen (possible) for SMR with PSA. Based on it a hydrogen quality assurance plan following ISO 19880-8 can be devised to support hydrogen providers in monitoring the relevant contaminants.
MELCOR Analysis of a SPARC Experiment for Spray-PAR Interaction During a Hydrogen Release
Oct 2020
Publication
A series of experiments were performed in the SPARC (spray-aerosol-recombiner-combustion) test facility to simulate a hydrogen mitigation system with the actuation of a PAR (passive auto-catalytic re-combiner) and spray system. In this study the SPARC-SPRAY-PAR (SSP1) experiment is chosen to benchmark the MELCOR (a lumped-parameter code for severe accident analysis) predictions against test data. For this purpose firstly we prepared the base input model of the SPARC test vessel and tested it by a simple verification problem with well-defined boundary conditions. The implementation of a currently used PAR correlation in MELCOR is shown to be appropriate for the simulation of a PAR actuation experiment. In an SSP1 experiment the PAR is reacting with hydrogen and the spray actuation starts as soon as hydrogen injection is complete. The MELCOR simulation well predicts the pressure behavior and the gas flow affected by operating both a PAR and spray system. However the local hydrogen concentration measurement near the inlet nozzle is much higher than the volume average-value by MELCOR since high jet flow from the nozzle is dispersed in the corresponding cell volume. The experimental reproduction of the phenomena we expect or conversely the identification of phenomena we do not understand will continue to support the verification of analytical models using experimental data and to analyze the impact of spray on PAR operations in severe accident conditions.
Electrocatalytic Properties for the Hydrogen Evolution of the Electrodeposited Ni–Mo/WC Composites
May 2021
Publication
The catalytical activity for the hydrogen evolution reaction (HER) of the electrodeposited Ni–Mo/WC composites is examined in 1 M KOH solution. The structure surface morphology and surface composition is investigated using the scanning electron microscopy X-ray diffraction and X-ray photoelectron spectroscopy. The electrocatalytic properties for the HER is evaluated based on the cathodic polarization electrochemical impedance cyclic voltammetry and chronopotentiometry methods. The obtained results prove the superior catalytic activity for the HER of Ni–Mo/WC composites to Ni–Mo alloy. The catalytic activity of Ni–Mo/WC electrodes is determined by the presence of WC nanoparticles and Mo content in the metallic matrix. The best electrocatalytic properties are identified for Ni–Mo/WC composite with the highest Mo content and the most oxidized surface among the studied coatings. The impedance results reveal that the observed improvement in the catalytic activity is the consequence of high real surface area and high intrinsic catalytic activity of the composite.
Experimental and Theoretical Insights to Demonstrate the Hydrogen Evolution Activity of Layered Platinum Dichalcogenides Electrocatalysts
Mar 2021
Publication
Hydrogen is a highly efficient and clean renewable energy source and water splitting through electrocatalytic hydrogen evolution is a most promising approach for hydrogen generation. Layered transition metal dichalcogenides-based nano-structures have recently attracted significant interest as robust and durable catalysts for hydrogen evolution. We systematically investigated the platinum (Pt) based dichalcogenides (PtS2 PtSe2 and PtTe2) as highly energetic and robust hydrogen evolution electrocatalysts. PtTe2 catalyst unveiled the rapid hydrogen evolution process with the low overpotentials of 75 and 92 mV (vs. RHE) at a current density of 10 mA cm−2 and the small Tafel slopes of 64 and 59 mV/dec in acidic and alkaline medium respectively. The fabricated PtTe2 electrocatalyst explored a better catalytic activity than PtS2 and PtSe2. The density functional theory estimations explored that the observed small Gibbs free energy for H-adsorption of PtTe2 was given the prominent role to achieve the superior electrocatalytic and excellent stability activity towards hydrogen evolution due to a smaller bandgap and the metallic nature. We believe that this work will offer a key path to use Pt based dichalcogenides for hydrogen evolution electrocatalysts.
Tautomeric Equilibrium of an Asymmetric β-Diketone in Halogen-Bonded Cocrystals with Perfluorinated Iodobenzenes
Jun 2021
Publication
In order to study the effect of halogen bond on tautomerism in β-diketones in the solid-state we have prepared a series of cocrystals derived from an asymmetric β-diketone benzoyl-4-pyridoylmethane (b4pm) as halogen bond acceptor and perfluorinated iodobenzenes: iodopentaflourobenzene (ipfb) 12- 13- and 14-diiodotetraflorobenzene (12tfib 13tfib and 14tfib) and 135-triiodo-246-trifluorobenzene (135titfb). All five cocrystals are assembled by I···N halogen bonds involving pyridyl nitrogen and iodoperfluorobenzene iodine resulting in 1:1 (four compounds) or 1:2 (one compound) cocrystal stoichiometry. Tautomer of b4pm in which hydrogen atom is adjacent to the pyridyl fragment was found to be more stable in vacuo than tautomer with a benzoyl hydroxyl group. This tautomer is also found to be dominant in the majority of crystal structures somewhat more abundantly in crystal structures of cocrystals in which additional I···O halogen bond with the benzoyl oxygen has been established. Attempts have also been made to prepare an equivalent series of cocrystals using a closely related asymmetric β-diketone benzoyl-3-pyridoylmethane (b3pm); however all attempts were unsuccessful which is attributed to more effective crystal packing of b3pm isomer compared to b4pm which reduced the probability of cocrystal formation.
A Solar Thermal Sorption-enhanced Steam Methane Reforming (SE-SMR) Approach and its Performance Assessment
Feb 2022
Publication
This paper proposes an integration of concentrating solar power (CSP) with a sorption-enhanced steam methane reforming (SE-SMR) process and assesses its overall solar-to-fuel conversion performance. A thermodynamic treatment of the SE-SMR process for H2 production is presented and evaluated in an innovative two reactors system configuration using CSP as a heat input. Four metal carbonate/metal oxide pairs are considered and the equilibrium thermodynamics reveals that CaCO3/CaO pair is the most suitable candidate for this process. Additionally a reactor-scale thermodynamic model is developed to determine the optimum operating conditions for the process. For the carbonation step temperatures between 700 and 900 K and steam-to-methane ratio ≥4 are found to be the most favorable. Furthermore an advanced process model which utilizes operating conditions determined from the reactor-scale model is developed to evaluate the process efficiency. The model predicts that the proposed process can achieve a solar-to-fuel efficiency ~41% for calcination temperature of 1500 K and carbonation temperature of 800 K without considering any solid heat recovery. An additional 2.5% increase in the process efficiency is feasible with the consideration of the solid heat recovery. This study shows the thermodynamic feasibility of integrating the SE-SMR process with CSP technologies.
Production of Ultra-dense Hydrogen H(0): A Novel Nuclear Fuel
Mar 2021
Publication
Condensation of hydrogen Rydberg atoms (highly electronically excited) into the lowest energy state of condensed hydrogen i.e. the ultra-dense hydrogen phase H(0) has gained increased attention not only from the fundamental aspects but also from the applied point of view. The physical properties of ultra-dense hydrogen H(0) were recently reviewed summarizing the results reported in 50 publications during the last ten years. The main application of H(0) so far is as the fuel and working medium in nuclear particle generators and nuclear fusion reactors which are under commercial development. The first fusion process showing sustained operation above break-even was published in 2015 (AIP Advances) and used ultra-dense deuterium D(0) as fuel. The first generator giving a high-intensity muon flux intended for muon-catalyzed fusion reactors was patented in 2017 using H(0) as the working medium. Here we first focus on the different nuclear processes using hydrogen isotopes for energy generation and then on the detailed processes of formation of H(0). The production of H(0) employs heterogeneous catalysts which are active in hydrogen transfer reactions. Iron oxide-based alkali promoted catalysts function well but also platinum group metals and carbon surfaces are active in this process. The clusters of highly excited Rydberg hydrogen atoms H(l) are formed upon interaction with alkali Rydberg matter. The final conversion step from ordinary hydrogen Rydberg matter H(l) to H(0) is spontaneous and does not require a solid surface. It is concluded that the exact choice of catalyst is not very important. It is also concluded that the crucial feature of the catalyst is to provide excited alkali atoms at a sufficiently high surface density and in this way enabling formation and desorption of H(0) clusters. Finally the relation to industrial catalytic processes which use H(0) formation catalysts is described and some important consequences like the muon and neutron radiation from H(0) are discussed.
Enhancing Energy Recovery in Form of Biogas, from Vegetable and Fruit Wholesale Markets By-Products and Wastes, with Pretreatments
Jun 2021
Publication
Residues and by-products from vegetables and fruit wholesale markets are suitable for recovery in the form of energy through anaerobic digestion allowing waste recovery and introducing them into the circular economy. This suitability is due to their composition structural characteristics and to the biogas generation process which is stable and without inhibition. However it has been observed that the proportion of methane and the level of degradation of the substrate is low. It is decided to study whether the effect of pretreatments on the substrate is beneficial. Freezing ultrafreezing and lyophilization pretreatments are studied. A characterization of the substrates has been performed the route of action of pretreatment determined and the digestion process studied to calculate the generation of biogas methane hydrogen and the proportions among these. Also a complete analysis of the process has been performed by processing the data with mathematical and statistical methods to obtain disintegration constants and levels of degradation. It has been observed that the three pretreatments have positive effects when increasing the solubility of the substrate increasing porosity and improving the accessibility of microorganisms to the substrate. Generation of gases are greatly increased reaching a methane enrichment of 59.751%. Freezing seems to be the best pretreatment as it increases the biodegradation level the speed of the process and the disintegration constant by 306%.
Modeling and Statistical Analysis of the Three-side Membrane Reactor for the Optimization of Hydrocarbon Production from CO2 Hydrogenation
Feb 2020
Publication
Direct CO2 hydrogenation to hydrocarbons is a promising method of reducing CO2 emissions along with producing value-added products. However reactor design and performance have remained a challenging issue because of low olefin efficiency and high water production as a by-product. Accordingly a one-dimensional non-isothermal mathematical model is proposed to predict the membrane reactor performance and statistical analysis is used to assess the effects of important variables such as temperatures of reactor (Tr:A) shell (Ts:B) and tube (Tt:C) as well as sweep ratio (θ:D) and pressure ratio (φ:E) and their interactions on the products yields. In addition the optimized operating conditions are also obtained to achieve maximum olefin yields. Results reveal that interacting effects comprising AB (TrTs) AC (TrTt) AE (Trφ) BC (TsTt) CE (Ttφ) CD (Ttθ) and DE (θφ) play important roles on the product yields. It is concluded that higher temperatures at low sweep and pressure ratios can maximize the yields of olefins while simultaneously the yields of paraffins are minimized. In this regard optimized values for Tr Ts Tt θ and φ are determined as 325 °C 306.96 °C 325 °C 1 and 1 respectively.
A Critical Review on the Principles, Applications, and Challenges of Waste-to-hydrogen Technologies
Sep 2020
Publication
Hydrogen sourced from energy recovery processes and conversion of waste materials is a method of providing both a clean fuel and a sustainable waste management alternative to landfill and incineration. The question is whether waste-to–hydrogen can become part of the zero-carbon future energy mix and serve as one of the cleaner hydrogen sources which is economically viable and environmentally friendly. This work critically assessed the potential of waste as a source of hydrogen production via various thermochemical (gasification and pyrolysis) and biochemical (fermentation and photolysis) processes. Research has shown hydrogen production yields of 33.6 mol/kg and hydrogen concentrations of 82% from mixed waste feedstock gasification. Biochemical methods such as fermentation can produce hydrogen up to 418.6 mL/g. Factors including feedstock quality process requirements and technology availability were reviewed to guide technology selection and system design. Current technology status and bottlenecks were discussed to shape future development priorities. These bottlenecks include expensive production and operation processes heterogeneous feedstock low process efficiencies inadequate management and logistics and lack of policy support. Improvements to hydrogen yields and production rates are related to feedstock processing and advanced energy efficiency processes such as torrefaction of feedstock which has shown thermal efficiency of gasification up to 4 MJ/kg. This will affect the economic feasibility and concerns around required improvements to bring the costs down to allow waste to viewed as a serious competitor for hydrogen production. Recommendations were also made for financially competitive waste-to-hydrogen development to be part of a combined solution for future energy needs.
Kinetic Parameters Estimation via Dragonfly Algorithm (DA) and Comparison of Cylindrical and Spherical Reactors Performance for CO2 Hydrogenation to Hydrocarbons
Oct 2020
Publication
Climate change and global warming as well as growing global demand for hydrocarbons in industrial sectors make great incentives to investigate the utilization of CO2 for hydrocarbons production. Therefore finding an in-depth understanding of the CO2 hydrogenation reactors along with simulating reactor responses to different operating conditions are of paramount importance. However the reaction mechanisms for CO2 hydrogenation and their corresponding kinetic parameters have been disputable yet. In this regard considering the previously proposed Langmuir-Hinshelwood-Hougen-Watson (LHHW) mechanism which considered CO2 hydrogenation as a combination of reverse water gas shift (RWGS) and Fischer-Tropsch (FT) reactions and using a one-dimensional pseudo-homogeneous non-isothermal model kinetic parameters of the rate expressions are estimated via fitting experimental and modelling data through a novel swarm intelligence optimization technique called dragonfly algorithm (DA). The predicted reactants conversion using DA algorithm are closer to the experimental data (with about 4% error) comparing to those obtained by the artificial bee colony (ABC) algorithm and are in significant agreement with available literature data. The proposed model is used to assess the effect of reactor configuration on the performance and temperature fluctuations. Results show that axial flow spherical reactor (AFSR) and radial flow spherical reactor (RFSR) exhibiting the same surface area with that of the cylindrical reactor (CR) i.e. AFSR-2 and RFSR-2-i are the most efficient exhibiting hydrocarbons selectivity of 40.330% and 40.286% at CO2 conversion of 53.763% and 53.891%. In addition it is revealed that the location of the jacket has an essential role in controlling the reactor temperature.
Microwave Absorption of Aluminum/Hydrogen Treated Titanium Dioxide Nanoparticles
Dec 2018
Publication
Interactions between incident electromagnetic energy and matter are of critical importance for numerous civil and military applications such as photocatalysis solar cells optics radar detection communications information processing and transport et al. Traditional mechanisms for such interactions in the microwave frequency mainly rely on dipole rotations and magnetic domain resonance. In this study we present the first report of the microwave absorption of Al/H2 treated TiO2 nanoparticles where the Al/H2 treatment not only induces structural and optical property changes but also largely improves the microwave absorption performance of TiO2 nanoparticles. Moreover the frequency of the microwave absorption can be finely controlled with the treatment temperature and the absorption efficiency can reach optimal values with a careful temperature tuning. A large reflection loss of −58.02 dB has been demonstrated with 3.1 mm TiO2 coating when the treating temperature is 700 °C. The high efficiency of microwave absorption is most likely linked to the disordering-induced property changes in the materials. Along with the increased microwave absorption properties are largely increased visible-light and IR absorptions and enhanced electrical conductivity and reduced skin-depth which is likely related to the interfacial defects within the TiO2 nanoparticles caused by the Al/H2 treatment.
No more items...