Production & Supply Chain
Multi-Objective Optimal Design of a Hydrogen Supply Chain Powered with Agro-Industrial Wastes from the Sugarcane Industry: A Mexican Case Study
Jan 2022
Publication
This paper presents an optimization modeling approach to support strategic planning for designing hydrogen supply chain (HSC) networks. The energy source for hydrogen production is proposed to be electricity generated at Mexican sugar factories. This study considers the utilization of existing infrastructure in strategic areas of the country which brings several advantages in terms of possible solutions. This study aims to evaluate the economic and environmental implications of using biomass wastes for energy generation and its integration to the national energy grid where the problem is addressed as a mixed-integer linear program (MILP) adopting maximization of annual profit and minimization of greenhouse gas emissions as optimization criteria. Input data is provided by sugar companies and the national transport and energy information platform and were represented by probability distributions to consider variability in key parameters. Independent solutions show similarities in terms of resource utilization while also significant differences regarding economic and environmental indicators. Multi-objective optimization was performed by a genetic algorithm (GA). The optimal HSC network configuration is selected using a multi-criteria decision technique i.e. TOPSIS. An uncertainty analysis is performed and main economic indicators are estimated by investment assessment. Main results show the trade-off interactions between the HSC elements and optimization criteria. The average internal rate of return (IRR) is estimated to be 21.5% and average payback period is 5.02 years.
Power Generation Analysis of Terrestrial Ultraviolet-Assisted Solid Oxide Electrolyzer Cell
Jan 2022
Publication
This paper presents a novel system design that considerably improves the entrapment of terrestrial ultraviolet (UV) irradiance in a customized honeycomb structure to produce hydrogen at a standard rate of 7.57 slpm for places with a UV index > 11. Thermolysis of high salinity water is done by employing a solid oxide electrolyzer cell (SOEC) which comprises three customized novel active optical subsystems to filter track and concentrate terrestrial UV solar irradiance by Fresnel lenses. The output of systems is fed to a desalinator a photovoltaic system to produce electrical energy and a steam generator with modified surface morphology to generate the required superheated steam for the SOEC. A simulation in COMSOL Multiphysics ver. 5.6 has shown that a customized honeycomb structure when incorporated on the copper–nickel surface of a steam generator improves its absorptance coefficient up to 93.43% (48.98%—flat case). This results in generating the required superheated steam of 650 ◦C with a designed active optical system comprising nine Fresnel lenses (7 m2 ) that offer the concentration of 36 suns on the honeycomb structure of the steam generator as input. The required 1.27 kW of electrical power is obtained by concentrating the photovoltaic system using In0.33Ga0.67N/Si/InN solar cells. This production of hydrogen is sustainable and cost effective as the estimated cost over 5 years by the proposed system is 0.51 USD/kg compared to the commercially available system which costs 3.18 USD/kg.
Hydrogen Production from Natural Gas and Biomethane with Carbon Capture and Storage – A Techno-environmental Analysis
Mar 2020
Publication
This study presents an integrated techno-environmental assessment of hydrogen production from natural gas and biomethane combined with CO2 capture and storage (CCS). We have included steam methane reforming (SMR) and autothermal reforming (ATR) for syngas production. CO2 is captured from the syngas with a novel vacuum pressure swing adsorption (VPSA) process that combines hydrogen purification and CO2 separation in one cycle. As comparison we have included cases with conventional amine-based technology. We have extended standard attributional Life Cycle Assessment (LCA) following ISO standards with a detailed carbon balance of the biogas production process (via digestion) and its by-products. The results show that the life-cycle greenhouse gas (GHG) performance of the VPSA and amine-based CO2 capture technologies is very similar as a result of comparable energy consumption. The configuration with the highest plant-wide CO2 capture rate (almost 100% of produced CO2 captured) is autothermal reforming with a two-stage water-gas shift and VPSA CO2 capture – because the latter has an inherently high CO2 capture rate of 98% or more for the investigated syngas. Depending on the configuration the addition of CCS to natural gas reforming-based hydrogen production reduces its life-cycle Global Warming Potential by 45–85 percent while the other environmental life-cycle impacts slightly increase. This brings natural gas-based hydrogen on par with renewable electricity-based hydrogen regarding impacts on climate change. When biomethane is used instead of natural gas our study shows potential for net negative greenhouse gas emissions i.e. the net removal of CO2 over the life cycle of biowaste-based hydrogen production. In the special case where the biogas digestate is used as agricultural fertiliser and where a substantial amount of the carbon in the digestate remains in the soil the biowaste-based hydrogen reaches net-negative life cycle greenhouse gas emissions even without the application of CCS. Addition of CCS to biomethane-based hydrogen production leads to net-negative emissions in all investigated cases.
An Extended Flamelet-based Presumed Probability Density Function for Predicting Mean Concentrations of Various Species in Premixed Turbulent Flames
Sep 2020
Publication
Direct Numerical Simulation (DNS) data obtained by Dave and Chaudhuri (2020) from a lean complex-chemistry hydrogen-air flame associated with the thin-reaction-zone regime of premixed turbulent burning are analyzed to perform a priori assessment of predictive capabilities of the flamelet approach for evaluating mean species concentrations. For this purpose dependencies of mole fractions and rates of production of various species on a combustion progress variable c obtained from the laminar flame are averaged adopting either the actual Probability Density Function (PDF) P (c) extracted from the DNS data or a common presumed β-function PDF. On the one hand the results quantitatively validate the flamelet approach for the mean mole fractions of all species including radicals but only if the actual PDF P (c) is adopted. The use of the β-function PDF yields substantially worse results for the radicals’ concentrations. These findings put modeling the PDF P (c) on the forefront of the research agenda. On the other hand the mean rate of product creation and turbulent burning velocity are poorly predicted even adopting the actual PDF. These results imply that in order to evaluate the mean species concentrations the flamelet approach could be coupled with another model that predicts the mean rate and turbulent burning velocity better. Accordingly the flamelet approach could be implemented as post-processing of numerical data yielded by that model. Based on the aforementioned findings and implications a new approach to building a presumed PDF is developed. The key features of the approach consist in (i) adopting a re-normalized flamelet PDF for intermediate values of c and (ii) directly using the mean rate of product creation to calibrate the presumed PDF. Capabilities of the newly developed PDF for predicting mean species concentrations are quantitively validated for all species including radicals.
Large Transition State Stabilization From a Weak Hydrogen Bond
Jul 2020
Publication
A series of molecular rotors was designed to study and measure the rate accelerating effects of an intramolecular hydrogen bond. The rotors form a weak neutral O–H⋯O[double bond length as m-dash]C hydrogen bond in the planar transition state (TS) of the bond rotation process. The rotational barrier of the hydrogen bonding rotors was dramatically lower (9.9 kcal mol−1) than control rotors which could not form hydrogen bonds. The magnitude of the stabilization was significantly larger than predicted based on the independently measured strength of a similar O–H⋯O[double bond length as m-dash]C hydrogen bond (1.5 kcal mol−1). The origins of the large transition state stabilization were studied via experimental substituent effect and computational perturbation analyses. Energy decomposition analysis of the hydrogen bonding interaction revealed a significant reduction in the repulsive component of the hydrogen bonding interaction. The rigid framework of the molecular rotors positions and preorganizes the interacting groups in the transition state. This study demonstrates that with proper design a single hydrogen bond can lead to a TS stabilization that is greater than the intrinsic interaction energy which has applications in catalyst design and in the study of enzyme mechanisms.
Comparison Between Carbon Molecular Sieve and Pd-Ag Membranes in H2-CH4 Separation at High Pressure
Aug 2020
Publication
From a permeability and selectivity perspective supported thin-film Pd–Ag membranes are the best candidates for high-purity hydrogen recovery for methane-hydrogen mixtures from the natural gas grid. However the high hydrogen flux also results in induced bulk-to-membrane mass transfer limitations (concentration polarization) especially when working at low hydrogen concentration and high pressure which further reduces the hydrogen permeance in the presence of mixtures. Additionally Pd is a precious metal and its price is lately increasing dramatically. The use of inexpensive CMSM could become a promising alternative. In this manuscript a detailed comparison between these two membrane technologies operating under the same working pressure and mixtures is presented.<br/>First the permeation properties of CMSM and Pd–Ag membranes are compared in terms of permeance and purity and subsequently making use of this experimental investigation an economic evaluation including capital and variable costs has been performed for a separation system to recover 25 kg/day of hydrogen from a methane-hydrogen mixture. To widen the perspective also a sensitivity analysis by changing the pressure difference membrane lifetime membrane support cost and cost of Pd/Ag membrane recovery has been considered. The results show that at high pressure the use of CMSM is to more economic than the Pd-based membranes at the same recovery and similar purity.
Anchoring of Turbulent Premixed Hydrogen/Air Flames at Externally Heated Walls
Oct 2020
Publication
A joint experimental and numerical investigation of turbulent flame anchoring at externally heated walls is presented. The phenomenon has primarily been studied for laminar flames and micro-combustion while this study focuses on large-scale applications and elevated Reynolds number flows. Therefore a novel burner design is developed and examined for a diverse set of operating conditions. Hydroxyl radical chemiluminescence measurements are employed to validate the numerical method. The numerical investigation evaluates the performance of various hydrogen/air kinetics Reynolds-averaged turbulence models and the eddy dissipation concept (EDC) as a turbulence-chemistry interaction model. Simulation results show minor differences between detailed chemical mechanisms but pronounced deviations for a reduced kinetic. The baseline k-ω turbulence model is assessed to most accurately predict flame front position and shape. Universal applicability of EDC modelling constants is contradicted. Conclusively the flame anchoring concept is considered a promising approach for pilot flames in continuous combustion devices.
Recent Advancements in Chemical Looping Water Splitting for the Production of Hydrogen
Oct 2016
Publication
Chemical looping water splitting or chemical looping hydrogen is a very promising technology for the production of hydrogen. In recent years extensive research has enabled remarkable leaps towards a successful integration of the chemical looping technology into a future hydrogen infrastructure. Progress has been reported with iron based oxygen carriers for stable hydrogen production capacity over consecutive cycles without significant signs of degradation. The high stability improvements were achieved by adding alien metal oxides or by integrating the active component into a mineral structure which offers excellent resistance towards thermal stress. Prototype systems from small μ-systems up to 50 kW have been operated with promising results. The chemical looping water splitting process was broadened in terms of its application area and utilization of feedstocks using a variety of renewable and fossil resources. The three-reactor system was clearly advantageous due to its flexibility heat integration capabilities and possibility to produce separate pure streams of hydrogen CO2 and N2. However two-reactor and single fixed-bed reactor systems were successfully operated as well. This review aims to survey the recently presented literature in detail and systematically summarize the gathered data.
Integration of Chemical Looping Combustion for Cost-effective CO2 Capture from State-of-the-art Natural Gas Combined Cycles
May 2020
Publication
Chemical looping combustion (CLC) is a promising method for power production with integrated CO2 capture with almost no direct energy penalty. When integrated into a natural gas combined cycle (NGCC) plant however CLC imposes a large indirect energy penalty because the maximum achievable reactor temperature is far below the firing temperature of state-of-the-art gas turbines. This study presents a techno-economic assessment of a CLC plant that circumvents this limitation via an added combustor after the CLC reactors. Without the added combustor the energy penalty amounts to 11.4%-points causing a high CO2 avoidance cost of $117.3/ton which is more expensive than a conventional NGCC plant with post-combustion capture ($93.8/ton) with an energy penalty of 8.1%-points. This conventional CLC plant would also require a custom gas turbine. With an added combustor fired by natural gas a standard gas turbine can be deployed and CO2 avoidance costs are reduced to $60.3/ton mainly due to a reduction in the energy penalty to only 1.4%-points. However due to the added natural gas combustion after the CLC reactor CO2 avoidance is only 52.4%. Achieving high CO2 avoidance requires firing with clean hydrogen instead increasing the CO2 avoidance cost to $96.3/ton when a hydrogen cost of $15.5/GJ is assumed. Advanced heat integration could reduce the CO2 avoidance cost to $90.3/ton by lowering the energy penalty to only 0.6%-points. An attractive alternative is therefore to construct the plant for added firing with natural gas and retrofit the added combustor for hydrogen firing when CO2 prices reach very high levels.
Synthesis of Activated Ferrosilicon-based Microcomposites by Ball Milling and their Hydrogen Generation Properties
Jan 2019
Publication
Ferrosilicon 75 a 50:50 mixture of silicon and iron disilicide has been activated toward hydrogen generation by processing using ball milling allowing a much lower concentration of sodium hydroxide (2 wt %) to be used to generate hydrogen from the silicon in ferrosilicon with a shorter induction time than has been reported previously. An activation energy of 62 kJ/mol was determined for the reaction of ball-milled ferrosilicon powder with sodium hydroxide solution which is around 30 kJ/mol lower than that previously reported for unmilled ferrosilicon. A series of composite powders were also prepared by ball milling ferrosilicon with various additives in order to improve the hydrogen generation properties from ferrosilicon 75 and attempt to activate the silicon in the passivating FeSi2 component. Three different classes of additives were employed: salts polymers and sugars. The effects of these additives on hydrogen generation from the reaction of ferrosilicon with 2 wt% aqueous sodium hydroxide were investigated. It was found that composites formed of ferrosilicon and sodium chloride potassium chloride sodium polyacrylate sodium polystyrene sulfonate-co-maleic acid or fructose showed reduced induction times for hydrogen generation compared to that observed for ferrosilicon alone and all but fructose also led to an increase in the maximum hydrogen generation rate. In light of its low cost and toxicity and beneficial effects sodium chloride is considered to be the most effective of these additives for activating the silicon in ferrosilicon toward hydrogen generation. Materials characterisation showed that neither ball milling on its own nor use of additives was successful in activating the FeSi2 component of ferrosilicon for hydrogen generation and the improvement in rate and shortening of the induction period was attributed to the silicon component of the mixture alone The gravimetric storage capacity for hydrogen in ferrosilicon 75 is therefore maintained at only 3.5% rather than the 10.5% ideally expected for a material containing 75% silicon. In light of these results ferrosilicon 75 does not appear a good candidate for hydrogen production in portable applications.
Integration of Gas Switching Combustion and Membrane Reactors for Exceeding 50% Efficiency in Flexible IGCC Plants with Near-zero CO2 Emissions
Jul 2020
Publication
Thermal power plants face substantial challenges to remain competitive in energy systems with high shares of variable renewables especially inflexible integrated gasification combined cycles (IGCC). This study addresses this challenge through the integration of Gas Switching Combustion (GSC) and Membrane Assisted Water Gas Shift (MAWGS) reactors in an IGCC plant for flexible electricity and/or H2 production with inherent CO2 capture. When electricity prices are high H2 from the MAWGS reactor is used for added firing after the GSC reactors to reach the high turbine inlet temperature of the H-class gas turbine. In periods of low electricity prices the turbine operates at 10% of its rated power to satisfy the internal electricity demand while a large portion of the syngas heating value is extracted as H2 in the MAWGS reactor and sold to the market. This product flexibility allows the inflexible process units such as gasification gas treating air separation unit and CO2 compression transport and storage to operate continuously while the plant supplies variable power output. Two configurations of the GSC-MAWGS plant are presented. The base configuration achieves 47.2% electric efficiency and 56.6% equivalent hydrogen production efficiency with 94.8–95.6% CO2 capture. An advanced scheme using the GSC reduction gases for coal-water slurry preheating and pre-gasification reached an electric efficiency of 50.3% hydrogen efficiency of 62.4% and CO2 capture ratio of 98.1–99.5%. The efficiency is 8.4%-points higher than the pre-combustion CO2 capture benchmark and only 1.9%-points below the unabated IGCC benchmark.
Fabrication of CdS/β-SiC/TiO2 Tri-composites That Exploit Hole- and Electron-transfer Processes for Photocatalytic Hydrogen Production Under Visible Light
Dec 2017
Publication
In this work CdS/SiC/TiO2 tri-composite photocatalysts that exploit electron- and hole-transfer processes were fabricated using an easy two-step method in the liquid phase. The photocatalyst with a 1:1:1 M ratio of CdS/SiC/TiO2 exhibited a rate of hydrogen evolution from an aqueous solution of sodium sulfite and sodium sulfide under visible light of 137 μmol h−1 g−1 which is 9.5 times that of pure CdS. β-SiC can act as a sink for the photogenerated holes because the valence band level of β-SiC is higher than the corresponding bands in CdS and TiO2. In addition the level of the conduction band of TiO2 is lower than those of CdS and β-SiC so TiO2 can act as the acceptor of the photogenerated electrons. Our results demonstrate that hole transfer and absorption in the visible light region lead to an effective hydrogen-production scheme.
Study of the Effect of Addition of Hydrogen to Natural Gas on Diaphragm Gas Meters
Jun 2020
Publication
Power-to-gas technology plays a key role in the success of the energy transformation. This paper addresses issues related to the legal and technical regulations specifying the rules for adding hydrogen to the natural gas network. The main issue reviewed is the effects of the addition of hydrogen to natural gas on the durability of diaphragm gas meters. The possibility of adding hydrogen to the gas network requires confirmation of whether within the expected hydrogen concentrations long-term operation of gas meters will be ensured without compromising their metrological properties and operational safety. Methods for testing the durability of gas meters applied at test benches and sample results of durability tests of gas meters are presented. Based on these results a metrological and statistical analysis was carried out to establish whether the addition of hydrogen affects the durability of gas meters over time. The most important conclusion resulting from the conducted study indicates that for the tested gas meter specimens there was no significant metrological difference between the obtained changes of errors of indications after testing the durability of gas meters with varying hydrogen content (from 0% to 15%).
Properties of the Hydrogen Oxidation Reaction on Pt/C catalysts at Optimised High Mass Transport Conditions and its Relevance to the Anode Reaction in PEFCs and Cathode Reactions in Electrolysers
Jul 2015
Publication
Using a high mass transport floating electrode technique with an ultra-low catalyst loading (0.84–3.5 μgPt cm−2) of commonly used Pt/C catalyst (HiSPEC 9100 Johnson Matthey) features in the hydrogen oxidation reaction (HOR) and hydrogen evolution reaction (HER) were resolved and defined which have rarely been previously observed. These features include fine structure in the hydrogen adsorption region between 0.18 < V vs. RHE < 0.36 V vs. RHE consisting of two peaks an asymptotic decrease at potentials greater than 0.36 V vs. RHE and a hysteresis above 0.1 V vs. RHE which corresponded to a decrease in the cathodic scan current by up to 50% of the anodic scan. These features are examined as a function of hydrogen and proton concentration anion type and concentration potential scan limit and temperature. We provide an analytical solution to the Heyrovsky–Volmer equation and use it to analyse our results. Using this model we are able to extract catalytic properties (without mass transport corrections; a possible source of error) by simultaneously fitting the model to HOR curves in a variety of conditions including temperature hydrogen partial pressure and anion/H+ concentration. Using our model we are able to rationalise the pH and hydrogen concentration dependence of the hydrogen reaction. This model may be useful in application to fuel cell and electrolyser simulation studies.
Hydrogen and Hydrogen-derived Fuels through Methane Decomposition of Natural Gas – GHG Emissions and Costs
May 2020
Publication
Hydrogen can be produced from the decomposition of methane (also called pyrolysis). Many studies assume that this process emits few greenhouse gas (GHG) because the reaction from methane to hydrogen yields only solid carbon and no CO2. This paper assesses the life-cycle GHG emissions and the levelized costs for hydrogen provision from methane decomposition in three configurations (plasma molten metal and thermal gas). The results of these configurations are then compared to electrolysis and steam methane reforming (SMR) with and without CO2capture and storage (CCS). Under the global natural gas supply chain conditions hydrogen from methane decomposition still causes significant GHG emissions between 43 and 97 g CO2-eq./MJ. The bandwidth is predominately determined by the energy source providing the process heat i.e. the lowest emissions are caused by the plasma system using renewable electricity. This configuration shows lower GHG emissions compared to the “classical” SMR (99 g CO2-eq./MJ) but similar emissions to the SMR with CCS (46 g CO2-eq./MJ). However only electrolysis powered with renewable electricity leads to very low GHG emissions (3 g CO2-eq./MJ). Overall the natural gas supply is a decisive factor in determining GHG emissions. A natural gas supply with below-global average GHG emissions can lead to lower GHG emissions of all methane decomposition configurations compared to SMR. Methane decomposition systems (1.6 to 2.2 €/kg H2) produce hydrogen at costs substantially higher compared to SMR (1.0 to 1.2 €/kg) but lower than electrolyser (2.5 to 3.0 €/kg). SMR with CCS has the lowest CO2abatement costs (24 €/t CO2-eq. other > 141 €/t CO2-eq.). Finally fuels derived from different hydrogen supply options are assessed. Substantially lower GHG emissions compared to the fossil reference (natural gas and diesel/gasoline) are only possible if hydrogen from electrolysis powered by renewable energy is used (>90% less). The other hydrogen pathways cause only slightly lower or even higher GHG emissions.
Plasmonic Nickel Nanoparticles Decorated on to LaFeO3 Photocathode for Enhanced Solar Hydrogen Generation
Nov 2018
Publication
Plasmonic Ni nanoparticles were incorporated into LaFeO3 photocathode (LFO-Ni) to excite the surface plasmon resonances (SPR) for enhanced light harvesting for enhancing the photoelectrochemical (PEC) hydrogen evolution reaction. The nanostructured LFO photocathode was prepared by spray pyrolysis method and Ni nanoparticles were incorporated on to the photocathode by spin coating technique. The LFO-Ni photocathode demonstrated strong optical absorption and higher current density where the untreated LFO film exhibited a maximum photocurrent of 0.036 mA/cm2 at 0.6 V vs RHE and when incorporating 2.84 mmol Ni nanoparticles the photocurrent density reached a maximum of 0.066 mA/cm2 at 0.6 V vs RHE due to the SPR effect. This subsequently led to enhanced hydrogen production where more than double (2.64 times) the amount of hydrogen was generated compared to the untreated LFO photocathode. Ni nanoparticles were modelled using Finite Difference Time Domain (FDTD) analysis and the results showed optimal particle size in the range of 70–100 nm for Surface Plasmon Resonance (SPR) enhancement.
Hydrogen Production as a Clean Energy Carrier through Heterojunction Semiconductors for Environmental Remediation
Apr 2022
Publication
Today as a result of the advancement of technology and increasing environmental problems the need for clean energy has considerably increased. In this regard hydrogen which is a clean and sustainable energy carrier with high energy density is among the well-regarded and effective means to deliver and store energy and can also be used for environmental remediation purposes. Renewable hydrogen energy carriers can successfully substitute fossil fuels and decrease carbon dioxide (CO2 ) emissions and reduce the rate of global warming. Hydrogen generation from sustainable solar energy and water sources is an environmentally friendly resolution for growing global energy demands. Among various solar hydrogen production routes semiconductor-based photocatalysis seems a promising scheme that is mainly performed using two kinds of homogeneous and heterogeneous methods of which the latter is more advantageous. During semiconductor-based heterogeneous photocatalysis a solid material is stimulated by exposure to light and generates an electron–hole pair that subsequently takes part in redox reactions leading to hydrogen production. This review paper tries to thoroughly introduce and discuss various semiconductor-based photocatalysis processes for environmental remediation with a specific focus on heterojunction semiconductors with the hope that it will pave the way for new designs with higher performance to protect the environment.
Advanced Hydrogen and CO2 Capture Technology for Sour Syngas
Apr 2011
Publication
A key challenge for future clean power or hydrogen projects via gasification is the need to reduce the overall cost while achieving significant levels of CO2 capture. The current state of the art technology for capturing CO2 from sour syngas uses a physical solvent absorption process (acid gas removal–AGR) such as Selexol™ or Rectisol® to selectively separate H2S and CO2 from the H2. These two processes are expensive and require significant utility consumption during operation which only escalates with increasing levels of CO2 capture. Importantly Air Products has developed an alternative option that can achieve a higher level of CO2 capture than the conventional technologies at significantly lower capital and operating costs. Overall the system is expected to reduce the cost of CO2 capture by over 25%.<br/>Air Products developed this novel technology by leveraging years of experience in the design and operation of H2 pressure swing adsorption (PSA) systems in its numerous steam methane reformers. Commercial PSAs typically operate on clean syngas and thus need an upstream AGR unit to operate in a gasification process. Air Products recognized that a H2 PSA technology adapted to handle sour feedgas (Sour PSA) would enable a new and enhanced improvement to a gasification system. The complete Air Products CO2 Capture technology (CCT) for sour syngas consists of a Sour PSA unit followed by a low-BTU sour oxycombustion unit and finally a CO2 purification / compression system.
Kinetics Study and Modelling of Steam Methane Reforming Process Over a NiO/Al2O3 Catalyst in an Adiabatic Packed Bed Reactor
Dec 2016
Publication
Kinetic rate data for steam methane reforming (SMR) coupled with water gas shift (WGS) over an 18 wt. % NiO/α-Al2O3 catalyst are presented in the temperature range of 300–700 °C at 1 bar. The experiments were performed in a plug flow reactor under the conditions of diffusion limitations and away from the equilibrium conditions. The kinetic model was implemented in a one-dimensional heterogeneous mathematical model of catalytic packed bed reactor developed on gPROMS model builder 4.1.0®. The mathematical model of SMR process was simulated and the model was validated by comparing the results with the experimental values. The simulation results were in excellent agreement with the experimental results. The effect of various operating parameters such as temperature pressure and steam to carbon ratio on fuel and water conversion (%) H2 yield (wt. % of CH4) and H2 purity was modelled and compared with the equilibrium values.
State of the Art of Hydrogen Production via Pyrolysis of Natural Gas
Jul 2020
Publication
Fossil fuels have to be substituted by climate neutral fuels to contribute to CO2 reduction in the future energy system. Pyrolysis of natural gas is a well-known technical process applied for production of e. g. carbon black.
In the future it might contribute to carbon dioxide-free hydrogen production. Production of hydrogen from natural gas pyrolysis has thus gained interest in research and energy technology in the near past. If the carbon by-product of this process can be used for material production or can be sequestrated the produced hydrogen has a low carbon footprint.
This article reviews literature on the state of the art of methane/ natural gas pyrolysis process developments and at-tempts to assess the technology readiness level (TRL).
In the future it might contribute to carbon dioxide-free hydrogen production. Production of hydrogen from natural gas pyrolysis has thus gained interest in research and energy technology in the near past. If the carbon by-product of this process can be used for material production or can be sequestrated the produced hydrogen has a low carbon footprint.
This article reviews literature on the state of the art of methane/ natural gas pyrolysis process developments and at-tempts to assess the technology readiness level (TRL).
No more items...