Production & Supply Chain
Green Hydrogen Production—Fidelity in Simulation Models for Technical–Economic Analysis
Nov 2024
Publication
Green hydrogen production is a sustainable energy solution with great potential offering advantages such as adaptability storage capacity and ease of transport. However there are challenges such as high energy consumption production costs demand and regulation which hinder its largescale adoption. This study explores the role of simulation models in optimizing the technical and economic aspects of green hydrogen production. The proposed system which integrates photovoltaic and energy storage technologies significantly reduces the grid dependency of the electrolyzer achieving an energy self-consumption of 64 kWh per kilogram of hydrogen produced. By replacing the high-fidelity model of the electrolyzer with a reduced-order model it is possible to minimize the computational effort and simulation times for different step configurations. These findings offer relevant information to improve the economic viability and energy efficiency in green hydrogen production. This facilitates decision-making at a local level by implementing strategies to achieve a sustainable energy transition.
Experimental Investigation of a Newly Developed Hydrogen Production Cycle for Green Energy Applications
Jun 2025
Publication
This study introduces a novel hydrogen production system using the three-step copper chlorine (Cu-Cl) cycle. The proposed thermochemical cycle offers an innovative configuration that performs hydrogen production without an electrolysis step eliminating high-cost components such as membranes catalysts and electricity. The Cu-Cl cycle enables large-scale hydrogen production and is examined in various configurations including two- three- four- and five-step Cu-Cl cycles. Microscale experimental studies are conducted on a novel three-step Cu-Cl thermochemical cycle that works entirely on thermal energy input without electrolysis. In experimental studies some parameters that directly affect the amount of hydrogen production are investigated. The effects of parameters such as temperature steam/copper (S/C) ratio and reaction time on hydrogen production in the hydrolysis step are evaluated. The investigation also examined the impact of increasing temperature in the hydrolysis reaction on the generation of undesirable byproducts. Additionally the effect of increased temperatures in the decomposition process on oxygen formation is examined. In the optimization studies the individual and interactive effects of the parameters are analyzed using the Response Surface Methodology (RSM) and BoxBehnken Design (BBD) of experimental methods. The results of this study further show that the conditions with the highest hydrogen production are a S/C ratio of 55 a temperature of 400 ◦C and a reaction time between 30 and 40 min. It is also observed that hydrogen concentration increases with the increase in temperature and time and that the maximum level of 134.8 ppm is reached under optimum conditions.
Green Hydrogen Production: Energy and Economic Modelling of Self-sufficient Solar-powered Electrolyser Based on Seawater Desalination
Jun 2025
Publication
Growing energy demands and increasing concerns about climate change have spurred new approaches in both policy and industry with a focus on transforming current energy systems in modern energy hubs. In this context green hydrogen produced through electrolysis process powered by renewable energy sources emerges as a highly versatile and promising solution for decarbonising sectors and provide alternative fuels for process and transportation. This study models and simulates an integrated system comprising desalination brine treatment and electrolysis to generate green hydrogen fuelled entirely by solar energy. The desalination unit produces demineralised water suitable for electrolysis while alternative brine management strategies are explored for scenarios where brine discharge back to the sea is restricted. An economic analysis further evaluates cost-effective system configurations by varying component sizes. To demonstrate the model potential a case study for green hydrogen production based on seawater desalination was conducted for an Italian port city and extended to three other sites with different annual solar radiation. The objective is to determine configurations that minimise hydrogen cost and identify required incentives. The economic performance of the system in terms of the Levelized Cost of Hydrogen ranges from 5 to 8 €/kg while the required incentives to make green hydrogen competitive with blue hydrogen production systems vary between 7 and 12 M€ across the analysed configurations. Furthermore the analysis provides valuable insights into the potential of coastal areas to serve as critical hubs for green hydrogen production given the abundant availability of seawater. Ports with their existing infrastructure and proximity to maritime transport represent ideal locations for integrating renewable energy sources with hydrogen production facilities.
Strategic Raw Material Requirements for Large-scale Hydrogen Production in Portugal and European Union
Nov 2024
Publication
Global attention is being given to hydrogen as it is seen as a versatile energy carrier and a flexible energy vector in transitioning to a low-carbon economy. Hydrogen production/storage/conveyance is metal intensive and it is crucial to understand if there is material availability to fulfil the committed plans. Using the material intensity of electrolysers pipelines and desalinators along with the projected Portuguese and European Union roadmaps we are able to identify possible bottlenecks in the supply chains. The availability of the vast majority of raw materials does not represent a threat to hydrogen technologies implementation with electrolysers requiring almost up to 3 Mt of raw materials and pipelines up to 2.5 Mt. The evident exception is iridium although representing less than 0.001 % of the material requirements it may hinder the widespread implementation of proton exchange membrane electrolysers. Desalinators have the least material footprint of the studied infrastructure.
Recent Progress in Bio-hydrogen Production for Sustainable Energy and Chemical Production
Sep 2025
Publication
To combat global warming the decarbonisation of energy systems is essential. Hydrogen (H2) is an established chemical feedstock in many industries (fertiliser production steel manufacturing etc.) and has emerged as a promising clean energy carrier due to its high energy density and carbon-free usage. However most H2 is currently produced from fossil fuels undermining its sustainability. Biomass offers a renewable carbon-neutral feedstock for H2 production potentially reducing its environmental impact. This review examines thermochemical biological and electrochemical methods of bio-H2 generation. Thermochemical processes - including gasification fast pyrolysis and steam reforming - are the most technologically advanced offering high H2 yields. However challenges such as catalyst deactivation tar formation and pre- and post-processing limit efficiency. Advanced strategies like chemical looping sorption enhancement and membrane reactors are being developed to address these issues. Biological methods including dark and photo fermentation operate under mild conditions and can process diverse waste feedstocks. Despite their potential low H2 yields and difficulties in microbial inhibitors hinder scalability. Ensuring that microbial populations remain stable through the use of additives and optimising the bioreactors hydraulic retention rate also remain a challenge Combined fermentation systems and valorising byproducts could enhance performance and commercial viability. Electrochemical reforming of biomass-derived compounds is an emerging method that may enhance water electrolysis by co-producing value-added by-products. However current studies focus on biomass-derived compounds rather than complex biomass feedstocks limiting commercial relevance. Future research should focus on feedstock complexity electrocatalyst development and system scaling. A technology readiness comparison shows that thermochemical methods are the most commercially mature followed by biological and electrochemical approaches. Each method holds promise within specific niches warranting continued innovation and interdisciplinary development.
Green Hydrogen Production by Brewery Spent Grain Valorization Through Gasification and Membrane Seperation Towards Fuel-cell Grade Purity
May 2025
Publication
This study focuses on the potential valorization of brewers’ spent grain (BSG) through gasification for ultra-pure green hydrogen production via membrane separation. First a fundamental physicochemical characterization of BSG samples from two different Spanish brewing industries was conducted revealing high energy content and good reproducibility of elemental composition thus providing great potential for hydrogen generation in the context of circular economy for the brewery industry. The syngas composition reached by BSG gasification has been predicted and main operating conditions optimized to maximize the hydrogen yield (25–75 vol% air-steam mixture ratio GR = 0.75 T = 800 ◦C and P = 5 bar). For gas purification two Pd-membranes were fabricated by ELP-PP onto tubular PSS supports with high reproducibility (Pd-thickness in the range 8.22–8.75 μm) exhibiting an almost complete H2-selectivity good fitting to Sieverts’ law and hydrogen permeate fluxes ranging from 175 to 550 mol m− 2 h− 1 under ideal gas feed composition conditions. The mechanical resistance of membranes was maintained at pressure driving forces up to 10 bar thus highlighting their potential for commercialization and industrial application. Furthermore long-term stability tests up to 75 h indicated promising membrane performance for continuous operation offering valuable insights for stakeholders in the brewery industry to enhance economic growth and environmental sustainability through green hydrogen production from BSG.
Decarbonized Green Hydrogen Production by Sorption-enhanced Biomass Gasification: An Integrated Techno-econonic and Environmental Evaluation
Nov 2024
Publication
Deployment of innovative renewable-based energy applications are critical for reducing CO2 emissions and achieving global climate neutrality. This work evaluates the production of decarbonized green H2 based on sorption-enhanced biomass (sawdust) gasification. The calcium-based sorbent was evaluated in a looping cycle configuration as sorption material to enhance both the CO2 capture rate and the energy-efficient hydrogen production. The investigated concept is set to produce 100 MWth high purity hydrogen (>99.95% vol.) with very high decarbonization yield (>98–99%) using woody biomass as a fuel. Conventional biomass (sawdust) gasification systems with and without CO2 capture capability are also assessed for the calculation of energy and economic penalties induced by decarbonization. The results show that the decarbonized green hydrogen manufacture by sorption-enhanced biomass gasification shows attractive performances e.g. high overall energy efficiency (about 50%) reduced energy and economic penalties for almost total decarbonization (down to 8 net efficiency points) low specific carbon emissions at system level (lower than 7 kg/MWh) and negative CO2 emission for whole biomass value chain (about − 518.40 kg/MWh). However significant developments (e.g. improving reactor design and fuel/sorbent conversion yields reducing sorbent make-up etc.) are still needed to advance this innovative concept from present level to industrial sizes.
Energy-saving Hydrogen Production by Seawater Electrolysis Coupling Tip-enhanced Electric Field Promoted Electrocatalytic Sulfion Oxidation
Jul 2024
Publication
Hydrogen production by seawater electrolysis is significantly hindered by high energy costs and undesirable detrimental chlorine chemistry in seawater. In this work energy-saving hydrogen production is reported by chlorine-free seawater splitting coupling tip-enhanced electric field promoted electrocatalytic sulfion oxidation reaction. We present a bifunctional needle-like Co3S4 catalyst grown on nickel foam with a unique tip structure that enhances the kinetic rate by improving the current density in the tip region. The assembled hybrid seawater electrolyzer combines thermodynamically favorable sulfion oxidation and cathodic seawater reduction can enable sustainable hydrogen production at a current density of 100 mA cm−2 for up to 504 h. The hybrid seawater electrolyzer has the potential for scale-up industrial implementation of hydrogen production by seawater electrolysis which is promising to achieve high economic efficiency and environmental remediation.
Multiphysics Modeling of Electrolyzers under Dynamic Converter Operation
Sep 2025
Publication
The integration of electrolyzers into modern power systems is a critical step toward sustainable hydrogen production. However their dynamic power consumption and stringent operational constraints present considerable challenges. This article proposes a comprehensive multiphysics model of an alkaline electrolyzer emphasizing its interaction with a power electronic converter to ensure efficient and reliable power delivery. The study incorporates electrochemical principles to develop mathematical models that accurately represent the alkaline electrolyzer’s electrical behavior and dynamic response. A single-stage active front-end (AFE) rectifier based on SiC MOSFETs is employed as the power electronic interface offering improved energy efficiency enhanced system stability and reduced power quality issues compared to conventional approaches. Experimental results validate the performance of the proposed alkaline electrolyzer and converter models highlighting the potential for effective integration of alkaline electrolyzers into converter-based systems within renewable energy environments.
Membrane-Based Hydrogen Production: A Techno-Economic Evaluation of Cost and Feasibility
Feb 2025
Publication
As the global shift toward a low-carbon economy accelerates hydrogen is emerging as a crucial energy source. Among conventional methods for hydrogen production steam methane reforming (SMR) commonly paired with pressure swing adsorption (PSA) for hydrogen purification stands out due to its established infrastructure and technological maturity. This comprehensive techno-economic analysis focuses on membrane-based hydrogen production evaluating four configurations namely SMR SMR with PSA SMR with a palladium membrane and SMR with a ceramic–carbonate membrane coupled with a carbon capture system (CCS). The life cycle cost (LCC) of each configuration was assessed by analyzing key factors including production rate hydrogen pricing equipment costs and maintenance expenses. Sensitivity analysis was also conducted to identify major cost drivers influencing the LCC providing insights into the economic and operational feasibility of each configuration. The analysis reveals that SMR with PSA has the lowest LCC and is significantly more cost-efficient than configurations involving the palladium and ceramic–carbonate membranes. SMR with a ceramic–carbonate membrane coupled with CCS also demonstrates the most sensitive to energy variations due to its extensive infrastructure and energy requirement. Sensitivity analysis confirms that SMR with PSA consistently provides the greatest cost efficiency under varying conditions. These findings underscore the critical balance between cost efficiency and environmental considerations in adopting membrane-based hydrogen production technologies.
How to Size Regional Electrolysis Systems - Simple Guidelines for Deploying Grid-supporting Electrolysis in Regions with Renewable Energy Generation
Nov 2023
Publication
Our energy system is facing major challenges in the course of the unavoidable shift from fossil fuels to fluctuating renewable energy sources. Regional hydrogen production by electrolysis utilizing regional available excess energy can support the expansion of renewable energy by converting surplus energy into hydrogen and sup plying it to the end energy sectors as a secondary energy carrier or process media. We developed a methodology which allows the identification of the regional optimal electrolysis scaling the achievable Levelized Costs of Hydrogen (LCOH) as well as the annually producible amount of hydrogen for Central European regions using renewable surplus energy from PV and wind production. The results show that as best case currently LCOH of 4.5 €/kg can be achieved in regions with wind energy and LCOH of 5.6 €/kg in regions with PV energy at 1485 €/kW initial investment costs for the hydrogen production infrastructure. In these cases regions with wind energy require electrolysis systems with a capacity of 60 % of the wind peak power. Regions with PV energy require a scaling factor of only 45 % of the PV peak power. However we show that the impact of regional electricity demand and grid expansion has a significant influence on the LCOH and the scaling of the electrolysis. These effects were illustrated in clear heatmaps and serve as a guideline for the dimensioning of grid-supporting electrolysis systems by defining the renewable peak power the regional electricity demand as well as the existing grid capacity of the region under consideration.
Hydrogen Production by Catalytic Supercritical Water Gasification of Black Liquor-Based Wastewater
Apr 2025
Publication
In this work the wastewater obtained from the hydrothermal liquefaction of black liquor was treated and valorized for hydrogen production by supercritical water gasification (SCWG). The influence of the main process parameters on the conversion yield was studied. The experiments were conducted at three different temperatures (below and above the critical point of water): 350 ◦C 450 ◦C and 600 ◦C. The results showed that by increasing the temperature from 350 ◦C to 600 ◦C the total gas yield was highly improved (from 1.9 mol gas/kg of dried feedstock to 13.1 mol gas/kg of dried feedstock). The H2 composition was higher than that of CH4 and CO2 at 600 ◦C and the HHV of the obtained gas was 61.2 MJ/kg. The total organic carbon (TOC) removal efficiency was also improved by increasing the temperature indicating that the SCWG process could be used for both applications: (i) for wastewater treatment; (ii) for producing a high calorific gas. The experiments with the Raney-nickel catalyst were performed in order to study the catalyst’s influence on the conversion yield. The results indicated that the catalyst enhances carbon conversion and gas production from mild to higher temperatures. The maximum total gas yield obtained with this catalyst was 32.4 mol gas/kg of dried feedstock at 600 ◦C which is 2.5 times higher than that obtained at the same operating conditions without a catalyst. The H2 yield and the HHV of the obtained gas with the catalyst were 20.98 mol gas/kg dried feedstock and 80.2 MJ/kg respectively. However the major contribution of the catalytic SCWG process was the improvement of the total gas yield at mild operating temperatures (450 ◦C) and the obtained performance was even higher than that obtained at 600 ◦C without catalyst (17.81 mol gas/kg dried feedstock and 13.1 mol gas/kg dried feedstock respectively). This is a sustainable approach for treating wastewater at mild temperatures by catalytic SCWG.
Increasing the Efficiency of Water Electrolysis with the Application of Pulsing Electric Fields
Mar 2025
Publication
Due to hydrogen’s beneficial characteristics as a sustainable energy carrier the application of pulsing electric fields has been researched for its effectiveness during water electrolysis. Although there have been conflicting findings on the benefits of the application of pulsing electric fields this research highlights the potential it has to enhance the efficiency of water electrolysis while providing clarity on past discrepancies. This research achieves this by identifying distinctive energy flow profiles that result from various power input waveforms along with subsequent hydrogen production rates and efficiencies while also utilising a novel method of measuring the capacitance of the electrolyte to detect shifts in the molecular energy. The results indicate that pulsing electric fields can increase efficiency by up to 20 % or decrease efficiency by over 40 % depending on the energy flow profiles of the electrical molecular and electrochemical dynamics. Furthermore the use of pulsing electric fields also enabled load adaptability by allowing the electrolyser to operate effectively throughout a range of power inputs. For example the power input could be increased to cause a 279 % increase in hydrogen production without compromising efficiency; while conversely enabling electrolysis at >65 % efficiency using power input levels which were otherwise too low to drive electrochemical reactions. This study provides another step towards making renewable hydrogen viable as a sustainable energy carrier by identifying factors which influence and are influenced by changing electrical molecular and electrochemical dynamics while also providing a foundation for further research into more efficient use of energy to produce hydrogen gas.
Introducing a New Color of Hydrogen: Light-Blue Hydrogen
May 2025
Publication
A new type of hydrogen produced in situ in petroleum reservoirs is proposed. This technology is based on ex situ catalytic gasification of biomass combining two thermal enhanced oil recovery techniques currently used in industrial fields: cyclic steam stimulation and in situ combustion. This hydrogen named “light-blue hydrogen” is produced in reservoirs like naturally occurring white hydrogen and from fossil fuels like blue hydrogen. The color light blue results from the blending of white and blue. This approach is particularly suitable for mature petroleum reservoirs which are in the final stages of production or no longer producing oil. This manuscript describes the method for producing light-blue hydrogen in situ its commercial application prospects and the challenges for developing and scaling up this technology.
Experimental Investigation and Evaluation of Newly Designed Electrodes for Hydrogen Production in Alkaline Water Electrolysis
Jan 2025
Publication
Alkaline water electrolysis is a promising clean hydrogen production technology that accounts for a small percentage of global hydrogen production. Therefore the technique requires further research and development to achieve higher efficiencies and lower hydrogen production costs to replace the utilization of non-renewable energy sources for hydrogen production. In this study electrodes are fabricated through fused deposition modelling 3D printing technology for practical and accessible electrolyzer manufacturing where an initial nickel (Ni) catalyst layer is formed on the 3D printed electrode surface followed by copper modified nickel zinc iron oxide (NiZnFe4O4) layer to investigate a unique electrocatalyst. An alkaline electrolyzer is developed with Ni-NiZnFe4O4 coated 3D printed cathodes and stainless steel anodes to determine the hydrogen production capacities and efficiencies of the electrolysis process. Electrochemical measurements are used to assess the catalyst coated 3D printed electrodes ranging from physical electrochemistry to electrochemical impedance measurements. The results show that the triangular Ni-NiZnFe4O4 coated electrode with the highest aspect ratio exhibits the greatest current density of −183.17 mA/cm2 at −2.05 V during linear sweep voltammetry (LSV) tests where it also reaches a current density of −94.35 mA/cm2 at −1.2 V during cyclic voltammetry (CV) measurements. It is concluded that modification of surface geometry is also a crucial aspect of electrode performance as 30% lower overpotentials are achieved by the rectangular electrodes in this study. The hydrogen production capacities of the alkaline electrolyzer developed range from 4.22 to 5.82 × 10−10 kg/s operating at a cell voltage of 2.15 V. Furthermore the energy and exergy efficiencies of the alkaline electrolyzer are evaluated through the first and second laws of thermodynamics revealing the highest energy and exergy efficiencies of 14.34% and 13.86% for the highest aspect ratio rectangular electrode.
Operational Analysis of a Pilot-Scale Plant for Hydrogen Production via an Electrolyser Powered by a Photovoltaic System
Jul 2025
Publication
This study presents preliminary findings from an experimental campaign conducted on a pilot-scale green hydrogen production plant powered by a photovoltaic (PV) system. The integrated setup implemented at the University “Mediterranea” of Reggio Calabria includes renewable energy generation hydrogen production via electrolysis on-site storage and reconversion through fuel cells. The investigation assessed system performance under different configurations (on-grid and selective stand-alone modes) focusing on key operational phases such as inerting purging pressurization hydrogen generation and depressurization. Results indicate a strong linear correlation between the electrolyser’s power setpoint and the pressure rise rate with a maximum gradient of 0.236 bar/min observed at 75% power input. The system demonstrated robust and stable operation efficient control of shutdown sequences and effective integration with PV input. These outcomes support the technical feasibility of small-scale hydrogen systems driven by renewables and offer valuable reference data for calibration models and future optimization strategies.
A Review of the Life Cycle Assessment of the Carbon–Water–Energy Nexus of Hydrogen Production Pathways
May 2025
Publication
The hydrogen (H2) economy is seen as a crucial pathway for decarbonizing the energy system with green H2—i.e. obtained from water electrolysis supplied by renewable energy—playing a key role as an energy carrier in this transition. The growing interest in H2 comes from its versatility which means that H2 can serve as a raw material or energy source and various technologies allow it to be produced from a wide range of resources. Environmental impacts of H2 production have primarily focused on greenhouse gas (GHG) emissions despite other environmental aspects being equally relevant in the context of a sustainable energy transition. In this context Life Cycle Assessment (LCA) studies of H2 supply chains have become more common. This paper aims to compile and analyze discrepancies and convergences among recent reported values from 42 scientific studies related to different H2 production pathways. Technologies related to H2 transportation storage and use were not investigated in this study. Three environmental indicators were considered: Global Warming Potential (GWP) Energy Performance (EP) and Water Consumption (WF) from an LCA perspective. The review showed that H2 based on wind photovoltaic and biomass energy sources are a promising option since it provides lower GWP and higher EP compared to conventional fossil H2 pathways. However WF can be higher for H2 derived from biomass. LCA boundaries and methodological choices have a great influence on the environmental indicators assessed in this paper which leads to great variability in WF results as well as GWP variation due credits given to avoid GHG emissions in upstream process. In the case of EI the inclusion of energy embodied in renewable energy systems demonstrates great influence of upstream phase for electrolytic H2 based on wind and photovoltaic electricity.
Environmental, Economic, and Social Impacts of Methane Cracking for Hydrogen Production: A Comprehensive Review
Jul 2025
Publication
Methane cracking (MC) is emerging as a low-carbon hydrogen production technology. This review conducts a comprehensive bibliometric analysis of 46 studies examining the sustainability of MC process. The review employs Life Cycle Assessment (LCA) Life Cycle Cost (LCC) Techno-Economic Analysis (TEA) and Social Life Cycle Assessment (SLCA) methodologies. The findings reveal that LCOH for MC technologies ranges from 0.9 to 6.6 $/kg H2 at the same time GHG emissions span 0.8–14.5 kg CO2eq/kg H2 depending on the specific reactor configurations plant geographical locations and carbon revenues. These results indicate that MC can be competitive with steam methane reforming with carbon capture and electrolysis under certain conditions. However the review identifies significant research gaps including limited comprehensive LCA studies a lack of social impact assessments insufficient environmental impact analysis of molten media catalysts and particulate matter formation in MC processes as well as insufficient analysis of the potential of biomethane cracking.
Machine Learning Applications in Gray, Blue, and Green Hydrogen Production: A Comprehensive Review
May 2025
Publication
Hydrogen is increasingly recognized as a key contributor to a low-carbon energy future and machine learning (ML) is emerging as a valuable tool to optimize hydrogen production processes. This review presents a comprehensive analysis of ML applications across various hydrogen production pathways including gray blue and green hydrogen with additional insights into pink turquoise white and black/brown hydrogen. A total of 51 peer-reviewed studies published between 2012 and 2025 were systematically reviewed. Among these green hydrogen—particularly via water electrolysis and biomass gasification—received the most attention reflecting its central role in decarbonization strategies. ML algorithms such as artificial neural networks (ANNs) random forest (RF) and gradient boosting regression (GBR) have been widely applied to predict hydrogen yield optimize operational conditions reduce emissions and improve process efficiency. Despite promising results real-world deployment remains limited due to data sparsity model integration challenges and economic barriers. Nonetheless this review identifies significant opportunities for ML to accelerate innovation across the hydrogen value chain. By highlighting trends key methodologies and current gaps this study offers strategic guidance for future research and development in intelligent hydrogen systems aimed at achieving sustainable and cost-effective energy solutions.
Tracing the Research Pulse: A Bibliometric Analysis and Systematic Review of Hydrogen Production Through Gasification
Jun 2025
Publication
Clean hydrogen is expected to play a crucial role in the future decarbonized energy mix. This places the gasification of biomass as a critical conversion pathway for hydrogen production owing to its carbon neutrality. However there is limited research on the direction of the body of literature on this subject matter. Utilising the Bibliometrix package R this paper conducts a systematic review and bibliometric analysis of the literature on gasification-derived hydrogen production over the previous three decades. The results show a decade-wise spike in hydrogen research mostly contributed by China the United States and Europe whereas the scientific contribution of Africa on the topic is limited with less than 6% of the continent’s research output on the subject matter sponsored by African institutions. The current trend of the research is geared towards alignment with the Paris Agreement through feedstock diversification to include renewable sources such as biomass and municipal solid waste and decarbonising the gasification process through carbon-capture technologies. This review reveals a gap in the experimental evaluation of heterogenous organic municipal solid waste for hydrogen production through gasification within the African context. The study provides an incentive for policy actors and researchers to advance the green hydrogen economy in Africa.
No more items...